note2Markov Decision Process(MDP)

本文深入探讨了马尔科夫决策过程(MDP)、马尔可夫奖励过程(MRP)及其在强化学习中的应用。介绍了贝尔曼方程、价值函数、最优价值函数以及动态规划在MDP中的预测与控制策略。强调了价值迭代和策略迭代在寻找最优策略中的作用,并阐述了MDP如何通过agent的决策过程来优化状态转移。
摘要由CSDN通过智能技术生成

Markov Decision Process(MDP)

Markov Property:Just depend on current status

Markov Process/Markov Chain state transition matrix P : p ( s t + 1 = s ′ ∣ s t = s ) p(s_{t+1}=s'|s_t=s) p(st+1=sst=s)

从一个节点到另一个节点的概率

Markov Reward Process(MRP):add reward weights

Horizon:steps in each episode

Return:discount(avoid cyclic避免无穷奖励,在近期得到奖励)

value function

Markov Reward Process

Bellman equation: V ( s ) = R ( s ) + γ ∑ s ′ ∈ S P ( s ′ ∣ s ) V ( s ′ ) V(s)=R(s)+\gamma\sum_{s'\in S}P(s'|s)V(s') V(s)=R(s)+γsSP(ss)V(s)

在这里插入图片描述

求解矩阵的复杂度过大,适用于小数据

一次轨迹一次采样,用于计算相应的 V t ( s ) V_t(s) Vt(s)

value matrix计算方法:

(1)Monte Carlo Algorithm

(2)动态规划Bellman equation变成 bellman update (迭代计算)

Markov Decision Process

增加决策过程

P ( s t + 1 = s ′ ∣ s t = s , a t = a ) , a t P(s_{t+1}=s'|s_t=s,a_t=a),a_t P(st+1=sst=s,at=a),at表示当前采取的行为

相应的policy:

π ( a ∣ s ) = P ( a t ∣ s t ) \pi(a|s)=P(a_t|s_t) π(as)=P(atst)

已知一个Markov奖励过程与policy π \pi π,则可以把马尔可夫决策过程转化为马尔可夫奖励过程。

Compare MP/MRP & MDP

在当前状态到下一个状态中加上了由agent控制的过程(依赖于policy的选取)

从而可以对MDP计算一个价值函数:对policy(t时刻采取各种行为对应的随机变量)求一个期望。

def:action-value function q π ( s , a ) = E π [ G t ∣ s t = s , A t = a ] q^\pi(s,a)=E_\pi[G_t|s_t=s,A_t=a] qπ(s,a)=Eπ[Gtst=s,At=a]

relation: v π ( s ) = ∑ a ∈ A π ( a ∣ s ) q π ( s , a ) v^{\pi}(s)=\sum_{a\in A}\pi(a|s)q^\pi(s,a) vπ(s)=aAπ(as)qπ(s,a)

Prediction & Control in MDP

Prediction:evaluate a given policy

Control:(search the optimal policy)

Dynamic Programming

Prediction:

给定policy function,简化成Markov Reward process

synchronous backup递归求 v π ( s ) v_{\pi}(s) vπ(s),此时给定policy的价值函数,递归过程是 v t ( s ) = f ( v t + 1 ( s ) ) v_t(s)=f(v_{t+1}(s)) vt(s)=f(vt+1(s))收敛到 v π ( s ) v^\pi(s) vπ(s)

v t + 1 ( s ) = R π ( s ) + γ P π ( s ′ ∣ s ) v t ( s ′ ) v_{t+1}(s)=R^\pi(s)+\gamma P^\pi(s'|s)v_t(s') vt+1(s)=Rπ(s)+γPπ(ss)vt(s)

默认:价值函数只与状态有关

Optimal Value Function:

v ∗ ( s ) = m a x π   v π ( s ) v^*(s)=\underset{\pi}{max}\,v^{\pi}(s) v(s)=πmaxvπ(s)

π ∗ ( s ) = a r g   m a x v ∗   π ( s ) \pi^*(s)=\underset{v^*}{arg\,max}\,\pi(s) π(s)=vargmaxπ(s)

Find optimal policy:

1.Policy search(穷举)

2.MDP control,在infinte horizon情况下optimal policy 是deterministic

迭代过程:计算policy π \pi π,improve policy π ′ = g r e e d y ( v π ) \pi'=greedy(v^\pi) π=greedy(vπ)

即policy与value之间进行循环迭代
在这里插入图片描述

这样的操作保证效果 ↑ \uparrow

Bellman optimality equation: v ∗ ( s ) = m a x a q ∗ ( s , a ) v^*(s)=max_aq^*(s,a) v(s)=maxaq(s,a)

Value Iterate 对Bellman Optimality Equation 做迭代找到最佳策略

通过每一个状态迭代

man optimality equation: v ∗ ( s ) = m a x a q ∗ ( s , a ) v^*(s)=max_aq^*(s,a) v(s)=maxaq(s,a)

Value Iterate 对Bellman Optimality Equation 做迭代找到最佳策略

通过每一个状态迭代
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值