数据载入及初步观察
-
- 1 第一章:数据载入及初步观察
-
- 1.2 初步观察
- 1.3 保存数据
- 1.4 知道你的数据叫什么
-
- 1.4.1 任务一:pandas中有两个数据类型DateFrame和Series,通过查找简单了解他们。然后自己写一个关于这两个数据类型的小例子🌰[开放题]
- 1.4.2 任务二:根据上节课的方法载入"train.csv"文件
- 1.4.3 任务三:查看DataFrame数据的每列的名称
- 1.4.4任务四:查看"Cabin"这列的所有值[有多种方法]
- 1.4.5 任务五:加载文件"test_1.csv",然后对比"train.csv",看看有哪些多出的列,然后将多出的列删除
- 1.4.6 任务六: 将['PassengerId','Name','Age','Ticket']这几个列元素隐藏,只观察其他几个列元素
- 1.5 筛选的逻辑
- 1.6 了解你的数据吗?
1 第一章:数据载入及初步观察
1.1.1 任务一:导入numpy和pandas
import numpy as np
import pandas as pd
import os
1.1.2 任务二:载入数据
(1) 使用相对路径载入数据
(2) 使用绝对路径载入数据
#相对路径
pd.read_csv('train.csv')
#绝对路径
df = pd.read_csv(r'C:\Users\Administrator\hands-on-data-analysis-master\第一单元项目集合\train.csv')
path = os.path.abspath('train.csv')
path
'C:\\Users\\Administrator\\hands-on-data-analysis-master\\第一单元项目集合\\train.csv'
df = pd.read_csv(path)
df
pd.read_table(path)
pd.read_table(path,sep=',')
TSV文件和CSV的文件的区别是:前者使用\t作为分隔符,后者使用 , 作为分隔符。
df = pd.read_csv(‘test.tsv’, sep=’\t’)
1.1.3 任务三:每1000行为一个数据模块,逐块读取
chunker = pd.read_csv("train.csv",chunksize=1000)
for piece in chunker:
print(piece)
print(type(chunker))
chunker2 = pd.read_csv('train.csv', iterator = True)
print(type(chunker2)) # 得到 TextFileReader
chunker2.get_chunk(1000) # 注意重复运行之后的效果
<class 'pandas.io.parsers.TextFileReader'>
1.1.4 任务四:将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]
PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口
#方法一df.columns
df.columns = ['乘客ID', '是否幸存', '乘客等级(1/2/3等舱位)', '乘客姓名', '性别', '年龄', '堂兄弟/妹个数', '父母与小孩个数', '船票信息', '票价', '客舱', '登船港口']
df
#方法二df.rename
df = pd.read_csv(path)
df.rename(columns={
'PassengerId':'乘客ID','Survived':'是否幸存','Pclass' :'乘客等级(1/2/3等舱位)','Name' :'乘客姓名','Sex' :'性别','Age' :'年龄','SibSp' :'堂兄弟/妹个数','Parch' :'父母与小孩个数','Ticket' :'船票信息','Fare' :'票价','Cabin' :'客舱','Embarked' :'登船港口'}, inplace = True