高等数学基础

1.函数

1.定义

函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作

y=f\left( x\right) ,x\in X

其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值

函数有其定义域,函数表示一个规律,依靠这个规律对定义域中的任何实数,有一个确定的实数与之对应,函数也有两个要素:第一是定义域,第二是对应规律。

2.函数的特性

1.有界性

上界:存在一个实数k1,使得

\exists k_{1},f(x) \leq k

下界:存在一个实数k2,使得

\exists k_{2},f(x) \geq k

注:特殊符号说明:

\forall:任意,对任何都有  \exists:存在,总存在一个

有界:

一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:

m\leqslant f(x)\leqslant M

其中:

  • M 称为函数的上界。

  • m 称为函数的下界。

一个函数有界的充要条件:既有上界,又有下界。

分类

根据函数的有界性,可以分为以下几种情况:

  1. 有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。

  2. 无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。

2.单调性

一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:

  • 单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。

  • 严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。

  • 单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。

  • 严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。

3.奇偶性

一个函数 f(x) 在其定义域 D 上称为:

  • 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。

  • 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。

4.周期性

一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:

f(x+T)=f(x)

其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。

3.反函数

1.定义

给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数,记作

f^{-1}

换句话说,反函数

f^{-1}

满足以下两个条件:

  1. 对于 X 中的每一个x,有

    f^{-1}(f(x))=x

  2. 对于 Y 中的每一个 y,有

    f{-1}(f(y))=y

注意:原函数和反函数是关于y=x对称的。

2.反函数的存在条件

一个函数 f 存在反函数的充分必要条件是 f 是双射(即一一对应)。具体来说:

  1. 一一对应:对于 X 中的任意两个不同的元素 x1 和 x2,都有 f(x1)≠f(x2)。

  2. 满射:对于 Y 中的每一个元素 y,都存在 X 中的一个元素 x,使得 f(x)=y。

3.求解反函数

求函数的反函数通常涉及以下步骤。假设我们有一个函数 f:X→Y,我们希望找到它的反函数

f{-1}:Y\rightarrow y

。以下是详细的求解过程:

步骤 1:验证函数是否存在反函数

首先,需要验证函数 f 是否是双射(即一一对应)。只有当 f 是双射时,它才存在反函数。

步骤 2:解方程 y=f(x)

假设 y=f(x),我们需要解这个方程来找到 x 的表达式。具体来说,我们需要将 x 表示为 y 的函数:x=g(y)。

步骤 3:交换 x 和 y

在得到 x 的表达式后,将 x 和 y 互换,得到反函数

x=f{-1}(y)

步骤 4:验证反函数

最后,验证反函数是否满足反函数的定义,即:

  1. 对于 X 中的每一个 x,有

    f{-1}(f(x))=x

  2. 对于 Y 中的每一个 y,有

    f(f{-1}(y))=y

2.极限

1.数列极限的定义

设{{a_{n}}}是一个数列,a是一个实数.如果对任意给定的\varepsilon >0,存在一个N\in N^{+},使得当 n>N时,有

\left | a_{n}-a \right |<\varepsilon

就说数列{{a_{n}}}当n趋向无穷大时以a为极限,记成

\lim_{n\rightarrow \infty}a_{n}=a

也可以简记为

a_{n}\rightarrow a(n\rightarrow \infty)

我们也说数列{{a_{n}}}收敛于a.存在极限的数列称为收敛数列;不收敛的数列称为发散数列。

2.数列极限的性质

  1. 唯一性:如果数列 {{a_{n}}}收敛,则其极限是唯一的。

  2. 有界性:如果数列 {{a_{n}}}收敛,则它是有界的。

  3. 保序性:如果数列 {{a_{n}}} 和 {{b_{n}}} 都收敛,且对于所有 n,都有 a_{n}\leq b_{n},则

    \lim _{n\rightarrow \infty }a_{n}\leq \lim _{n\rightarrow \infty }b_{n}

  4. 四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。

3.数列极限的运算

1.直接法:

  • 通过分析数列的通项公式,直接计算其极限。

2.夹逼准则

如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且 
\lim _{n\rightarrow \infty }a_{n}= \lim _{n\rightarrow \infty }c_{n}=L
,则 
\lim _{n\rightarrow \infty }b_{n}=L

4.函数的极限

1.定义

设函数 f(x) 在点 x=a 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 ϵ(无论它多么小),总存在正数 δ,使得当 0<∣x−a∣<δ 时,有

∣f(x)−L∣<ϵ

则称 L 为函数 f(x)当 x 趋近于 a 时的极限,记作

\lim _{x\rightarrow a }f(x)=L

2.性质

  1. 唯一性:如果极限存在,那么它是唯一的。

  2. 局部有界性:如果

    \lim _{x\rightarrow a }f(x)=L

    ,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即

    |f(x)|\leq M

  3. 局部保号性:如果

    \lim _{x\rightarrow a }f(x)=L

    且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。

3.极限的计算

1. 代入法:如果 f(x) 在 x=a 处连续,则 

\lim _{x\rightarrow a }f(x)=f(a)\lim _{x\rightarrow a }f(x)=f(a)

2. 极限运算法则:如果\lim _{x\rightarrow a }f(x)=L和 \lim _{x\rightarrow a }g(x)=M ,则

\lim _{x\rightarrow a }[f(x) \pm g(x)] =L\pm M

\lim _{x\rightarrow a }[f(x) \cdot g(x)] =L\cdot M

\lim _{x\rightarrow a }\frac{f(x)}{g(x)}=\frac{L}{M}

3. 夹逼定理:如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且 
\lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L,则 
\lim _{x\rightarrow a }g(x)=L

5.单侧极限

  1. 左极限:如果\lim _{x\rightarrow a^{-}}f(x)=L则称 L 为 f(x) 在 x 趋近于 a 时的左极限。

  2. 右极限:如果\lim _{x\rightarrow a^{+}}f(x)=L,则称 L 为 f(x) 在 x 趋近于 a 时的右极限。

    如果极限\lim _{x\rightarrow a }f(x)存在,则左极限和右极限都存在且相等

5.无穷大和无穷小

1.无穷大

如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作

\lim _{x\rightarrow a }f(x)=\infty

无穷大分为正无穷大和负无穷大。

无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;

无穷大乘无穷大肯定为无穷大。

2.无穷小

  1. 如果\lim _{x\rightarrow a }f(x)=0\lim _{x\rightarrow \infty }f(x)=0,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。

  2. 运算法则:

    1.无穷小加、减、乘无穷小都是无穷小

    2.有界函数与无穷小的乘积也为无穷小

    3.常数与无穷小的乘积也为无穷小

    4.无穷小除以无穷小不确定。

    注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别

    负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。

如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。

     3.高阶无穷小

        设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。

        如果\lim _{x\rightarrow a }\frac{\alpha }{\beta }=0,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。

     4.低阶无穷小

        设 α 和 β 是两个无穷小量。

        如果\lim _{x\rightarrow a }\frac{\alpha }{\beta } = \propto,则称 α 是 β 的低阶无穷小。

     5.同阶无穷小

        设 α 和 β 是两个无穷小量。

        如果\lim _{x\rightarrow a }\frac{\alpha }{\beta }=c,(其中 c 是一个非零常数),则称 α 和 β 是同阶无穷小

     6.同阶无穷小

        设 α 和 β 是两个无穷小量。

        如果\lim _{x\rightarrow a }\frac{\alpha }{\beta }=1,则称 α 和 β 是同阶无穷小。

     7.k阶无穷小

        设 α和 β 是两个无穷小量,且\beta =o (x^{k})(x\rightarrow 0)如果\lim _{x\rightarrow a }\frac{\alpha }{\beta ^(c)}(c为一个非零常数),则称         α 是 β 的 k 阶无穷小。

6.无穷大极限

1.定义

函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。

2.具体分类

  1. 当 x→+∞ 时的极限:如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作\lim _{x\rightarrow +\infty }f(x)=A

  2. 当 x→−∞时的极限:如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作\lim _{x\rightarrow -\infty }f(x)=A

7.极限存在的准则

1.单调有界准则

如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。

2.夹逼准则

如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且 \lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L,则 
\lim _{x\rightarrow a }g(x)=L

3.函数的连续性

1.定义

1.在某点连续:

设函数 f(x)在点 x=a的某个邻域内有定义。如果\lim _{x\rightarrow a }f(x)=f(a),则称函数 f(x) 在点 x=a 处连续。

归纳起来:\lim _{x\rightarrow a^{+} }f(x)=f(a)

2.左连续

设函数 f(x) 在点 x=a 的左侧有定义(即存在一个 δ>0,使得 (a−δ,a)内的所有 x 都有定义)。如果\lim _{x\rightarrow a^{-} }f(x)=f(a),则称函数 f(x) 在点 x=a处左连续。

3.右连续

设函数 f(x) 在点 x=a 的右侧有定义(即存在一个 δ>0,使得 (a,a+δ)内的所有 x 都有定义)。如果\lim _{x\rightarrow a^{+} }f(x)=f(a),则称函数 f(x)在点 x=a 处右连续。

2.连续的充要条件

函数连续的充要条件:函数左右连续。

3.在区间的连续性

如果函数 f(x) 在区间 (a,b) 内的每一点都连续,则称函数 f(x)在区间 (a,b) 内连续。

如果函数 f(x) 在区间 [a,b] 内的每一点都连续,并且在左端点 x=a 处右连续,在右端点 x=b 处左连续,则称函数 f(x) 在区间 [a,b] 上连续

4.性质

  • 局部性质

    • 如果函数 f(x) 在点 x=a 处连续,则 f(x)在 x=a的某个邻域内有界。

  • 全局性质

    • 如果函数 f(x) 在区间 [a,b]上连续,则 f(x)在该区间上有界。

    • 如果函数 f(x) 在区间 [a,b] 上连续,则 f(x) 在该区间上达到最大值和最小值。

    • 如果函数 f(x)在区间 [a,b]上连续,并且 f(a)和 f(b)异号,则存在 c∈(a,b)使得 f(c)=0(零点定理,后边会讲)。

5.不连续点

1.定义

2.可去不连续点

如果\lim _{x\rightarrow a }f(x)存在且有限,但 f(a) 不存在或f(a)\neq \lim _{x\rightarrow a }f(x),则称 x=a 是 f(x)的可去不连续点。

3.跳跃不连续点

如果\lim _{x\rightarrow a^{-} }f(x)\lim _{x\rightarrow a^{+} }f(x)都存在且有极限,但\lim _{x\rightarrow a^{-}}f(x)\neq \lim _{x\rightarrow a^{+}}f(x),则称 x=a 是 f(x) 的跳跃不连续点。

4.无穷不连续点

如果\lim _{x\rightarrow a }f(x)不存在或为无穷大,则称 x=a是 f(x) 的无穷不连续点。

6.闭区间连续函数性质

1.零点定理

设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f(c)=0。

2.介值定理

设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min⁡(f(a),f(b))<k<max⁡(f(a),f(b))),存在 c∈(a,b) 使得 f(c)=k。

零点定理与介值定理的关系

零点定理是介值定理的特例:

  • 零点定理可以看作是介值定理在 k=0时的特例。

  • 如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f(c)=0。

4.导数

1.定义

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作

 即:

其中:

 

  • Δx 是一个很小的增量,表示 x 的变化量。

  • 是 x 在 x0 点增加 Δx 后的函数值。

  • f(x0) 是 x 在 x0 点的函数值。

  • 是函数在 x=x0 处的平均变化率。

  • 表示当 Δx 趋近于 0 时的极限。

  • 平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是

    。这个比值表示函数在这段区间内的平均变化速度。

  • 瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。

2.单侧单数

1.左导数

函数 f(x)在点 x=a 处的左导数定义为:

其中 h→0−表示 h 从负方向趋近于 0。

2.右导数

函数 f(x)在点 x=a处的右导数定义为:

其中 h→0+表示 h 从正方向趋近于 0。

3.导数的存在性

函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:

4.导数的几何意义

1.切线

由导数定义可知,f(x)在点 (a,f(a))处的斜率:

所以切线方程可以表示为:

其中:

  • y 是切线上的点的纵坐标。

  • f(a) 是函数在点 x=a 处的值。

  • f′(a) 是函数在点 x=a 处的导数,即切线的斜率。

  • x 是切线上的点的横坐标。

  • a 是切点处的横坐标。

化简切线方程:

将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

2.法线

是与切线垂直的直线。切线的斜率为f'(a),则法线的斜率为

法线方程的一般形式是:

其中:

  • y 是法线上的点的纵坐标。

  • f(a是函数在点 x=a处的值。

  • f′(a)是函数在点 x=a处的导数,即切线的斜率。

  • x 是法线上的点的横坐标。

  • a 是法线点处的横坐标。

化简法线方程: 将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

5.可导与连续的关系

1.定义

连续性

一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:

这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。

可导性

一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:

这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。

所以从连续和可导定义看出,可导的条件比连续的条件更严格。

2.定理

1.可导必连续

如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。

证明:如果函数 f(x) 在点 x=a处可导,则

我们要证f(x)在点 x=a 处连续,需要证明

变换上述等式:

所以

2.连续不一定可导

反例:考虑函数 f(x)=∣x|在 x=0处是否可导。

证明:

连续性:

函数是连续的

可导性:

左导数:

右导数:

左右导数不相等,所以函数不是可导的。

6.求导公式

  1. 常数规则

    其中 c 是常数。

  2. 幂函数规则

    其中 n 是任意实数。

  3. 常数倍规则

    其中 c 是常数。

  4. 和差规则

  5. 乘积规则

  6. 商规则

    其中 g(x)≠0。

  7. 链式法则(复合函数求导):

7.常见函数求导

1.指数函数

其中 a>0且 a≠1。

2.对数函数

其中 a>0且 a≠1。

3.三角函数

4.反三角函数

8.高阶导数

高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作

类似地,三阶导数是对二阶导数再求导,记作

以此类推。

1.定义

对于一个函数 f(x),其 n 阶导数定义为:

其中 n是正整数。

2.高阶导数的符号表示

9.隐函数求导

隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出

隐函数求导的基本步骤

  1. 对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。

  2. 使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数

  3. 通过求导得到的方程,解出 dy/dx。

10.参数方程求导

参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:

其中 t 是参数。我们希望求出曲线的导数 dy/dx。

参数方程求导的基本步骤:

5.微分

1.定义

微分是函数在某个变化过程中的改变量的线性主要部分。

若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量

可以表示为

其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,

微分dy可以近似地表示为

它描述了函数值y随自变量x变化而变化的线性部分。‌

例如:正方形的面积公式

y=x^{2}

假设正方形的初始边长x=a,然后在a的基础上边长增加一个非常小的改变量△x,此时正方形的边长x=a+△x,正方形增加的面积:

由于△x非常小,所以△x^2可以看作是△x的高阶无穷小,即O(△x),所以:

等式两边同除以△x:

求极限:

极限存在,所以函数可导,即:

AA

完整等式可表示为:

因此,微分dy可以近似地表示为

注意:△y是精确值,dy是近似值。

2.可微的充要条件

函数 f(x) 在点 x=a 处可微的充要条件是:

  1. 函数在点 x=a处连续:

  2. 函数在点 x=a 处左右导数存在且相等:

简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。

3.微分公式和法则

根据微分定义

可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。

4.微分的几何意义

假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:

△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:

f'(x)是切线的斜率,dy是△y的近似值,如上图所示,所以

所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。

常用的近似公式

x\rightarrow 0

5.微分中值定理

1.罗尔中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在区间端点的函数值相等,即 f(a)=f(b)。

那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0

罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。

2.拉格朗日中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b] 上连续。

  2. 在开区间 (a,b)上可导。

那么,在开区间 (a,b) 内至少存在一点 c,使得:

拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。

3.柯西中值定理

如果函数 f(x) 和 g(x) 满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在开区间 (a,b) 内,g′(x)≠0。

那么,在开区间 (a,b) 内至少存在一点 c,使得:

柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。

怎么理解柯西中值定理?

将f(x)和g(x)看作是参数方程:

a、b端点连线的斜率为:

根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:

6.洛必达法则

洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。

设函数 f(x)和 g(x 满足以下条件:

  1. 在点 a 的某个去心邻域内可导,且 g′(x)≠0。

  2.  

如果

存在(或为无穷大),那么:

7.函数的单调性

函数的单调性可以通过其导数来判定:

  1. 递增函数: 如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。

  2. 递减函数: 如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。

8.函数的凹凸性

函数的凹凸性可以通过其二阶导数来判定:

  1. 凹函数: 如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。

  2. 凸函数: 如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。

  3. 拐点:拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。

9.极值

1.定义

极值

是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f(c),则称 f(c) 是函数 f(x) 在点 c 处的局部极小值。

最值

最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f(c),则称 f(c)是函数 f(x)的全局最大值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f(c),则称 f(c)是函数 f(x)的全局最小值。

2.极值的充要条件

必要条件

如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。

充分条件

一阶导数判定法

  1. 局部极大值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。

  2. 局部极小值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。

二阶导数判定法

  1. 局部极大值: 如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。

  2. 局部极小值: 如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。

6.不定积分

1.定义

如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分\int f(x)dx

表示 f(x) 的所有原函数,通常写成: \int f(x)dx=F(x)+C

其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

2.基本积分公式

  1. 常数积分

    \int k dx=kx+C(其中 k 是常数)

  2. 幂函数积分

    \int x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1)

  3. 指数函数积分

    \int e^{x} dx=e^{x}+C

  4. 对数函数积分

  5. 三角函数积分

  6. 反三角函数积分

3.换元积分法

1.第一类换元积分法

  1. 选择合适的变量替换: 选择一个合适的变量替换 u=g(x),使得积分变得更简单。

  2. 求导数: 求 u 对 x 的导数

     

    并将其改写为

  3. 替换积分变量: 将原积分中的 x 替换为 u,并将 dx 替换为

  4. 求解新积分: 求解新的积分

  5. 回代变量: 将 u 回代为 g(x),得到最终的不定积分结果。

简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。

2.第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

  1. 选择合适的变量替换: 选择一个合适的变量替换 x=g(t),使得积分变得更简单。

  2. 求导数: 求 x 对 t 的导数

     

    并将其改写为

  3. 替换积分变量: 将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。

  4. 求解新积分: 求解新的积分

  5. 回代变量: 将 t 回代为

     

    得到最终的不定积分结果。

简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值