1.函数
1.定义
函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值
函数有其定义域,函数表示一个规律,依靠这个规律对定义域中的任何实数,有一个确定的实数与之对应,函数也有两个要素:第一是定义域,第二是对应规律。
2.函数的特性
1.有界性
上界:存在一个实数k1,使得
下界:存在一个实数k2,使得
注:特殊符号说明:
:任意,对任何都有 :存在,总存在一个
有界:
一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
其中:
-
M 称为函数的上界。
-
m 称为函数的下界。
一个函数有界的充要条件:既有上界,又有下界。
分类
根据函数的有界性,可以分为以下几种情况:
-
有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
-
无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
2.单调性
一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:
-
单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
-
严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
-
单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
-
严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
3.奇偶性
一个函数 f(x) 在其定义域 D 上称为:
-
偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
-
奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
4.周期性
一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。
3.反函数
1.定义
给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数,记作
换句话说,反函数
满足以下两个条件:
-
对于 X 中的每一个x,有
-
对于 Y 中的每一个 y,有
注意:原函数和反函数是关于y=x对称的。
2.反函数的存在条件
一个函数 f 存在反函数的充分必要条件是 f 是双射(即一一对应)。具体来说:
-
一一对应:对于 X 中的任意两个不同的元素 x1 和 x2,都有 f(x1)≠f(x2)。
-
满射:对于 Y 中的每一个元素 y,都存在 X 中的一个元素 x,使得 f(x)=y。
3.求解反函数
求函数的反函数通常涉及以下步骤。假设我们有一个函数 f:X→Y,我们希望找到它的反函数
。以下是详细的求解过程:
步骤 1:验证函数是否存在反函数
首先,需要验证函数 f 是否是双射(即一一对应)。只有当 f 是双射时,它才存在反函数。
步骤 2:解方程 y=f(x)
假设 y=f(x),我们需要解这个方程来找到 x 的表达式。具体来说,我们需要将 x 表示为 y 的函数:x=g(y)。
步骤 3:交换 x 和 y
在得到 x 的表达式后,将 x 和 y 互换,得到反函数
步骤 4:验证反函数
最后,验证反函数是否满足反函数的定义,即:
-
对于 X 中的每一个 x,有
-
对于 Y 中的每一个 y,有
2.极限
1.数列极限的定义
设{}是一个数列,a是一个实数.如果对任意给定的,存在一个,使得当 时,有
就说数列{}当n趋向无穷大时以a为极限,记成
也可以简记为
我们也说数列{}收敛于a.存在极限的数列称为收敛数列;不收敛的数列称为发散数列。
2.数列极限的性质
-
唯一性:如果数列 {}收敛,则其极限是唯一的。
-
有界性:如果数列 {}收敛,则它是有界的。
-
保序性:如果数列 {} 和 {} 都收敛,且对于所有 n,都有 ,则
-
四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
3.数列极限的运算
1.直接法:
-
通过分析数列的通项公式,直接计算其极限。
2.夹逼准则
如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
,则
4.函数的极限
1.定义
设函数 f(x) 在点 x=a 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 ϵ(无论它多么小),总存在正数 δ,使得当 0<∣x−a∣<δ 时,有
∣f(x)−L∣<ϵ
则称 L 为函数 f(x)当 x 趋近于 a 时的极限,记作
2.性质
-
唯一性:如果极限存在,那么它是唯一的。
-
局部有界性:如果
,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即
-
局部保号性:如果
且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。
3.极限的计算
1. 代入法:如果 f(x) 在 x=a 处连续,则
2. 极限运算法则:如果和 ,则
3. 夹逼定理:如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
,则
5.单侧极限
-
左极限:如果则称 L 为 f(x) 在 x 趋近于 a 时的左极限。
-
右极限:如果,则称 L 为 f(x) 在 x 趋近于 a 时的右极限。
如果极限存在,则左极限和右极限都存在且相等。
5.无穷大和无穷小
1.无穷大
如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
无穷大分为正无穷大和负无穷大。
无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;
无穷大乘无穷大肯定为无穷大。
2.无穷小
-
如果或,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。
-
运算法则:
1.无穷小加、减、乘无穷小都是无穷小
2.有界函数与无穷小的乘积也为无穷小
3.常数与无穷小的乘积也为无穷小
4.无穷小除以无穷小不确定。
注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别。
负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。
如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。
3.高阶无穷小
设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。
如果,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。
4.低阶无穷小
设 α 和 β 是两个无穷小量。
如果,则称 α 是 β 的低阶无穷小。
5.同阶无穷小
设 α 和 β 是两个无穷小量。
如果,(其中 c 是一个非零常数),则称 α 和 β 是同阶无穷小
6.同阶无穷小
设 α 和 β 是两个无穷小量。
如果,则称 α 和 β 是同阶无穷小。
7.k阶无穷小
设 α和 β 是两个无穷小量,且如果(c为一个非零常数),则称 α 是 β 的 k 阶无穷小。
6.无穷大极限
1.定义
函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。
2.具体分类
-
当 x→+∞ 时的极限:如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
-
当 x→−∞时的极限:如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
7.极限存在的准则
1.单调有界准则
如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。
2.夹逼准则
如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且 ,则
3.函数的连续性
1.定义
1.在某点连续:
设函数 f(x)在点 x=a的某个邻域内有定义。如果,则称函数 f(x) 在点 x=a 处连续。
归纳起来:
2.左连续
设函数 f(x) 在点 x=a 的左侧有定义(即存在一个 δ>0,使得 (a−δ,a)内的所有 x 都有定义)。如果,则称函数 f(x) 在点 x=a处左连续。
3.右连续
设函数 f(x) 在点 x=a 的右侧有定义(即存在一个 δ>0,使得 (a,a+δ)内的所有 x 都有定义)。如果,则称函数 f(x)在点 x=a 处右连续。
2.连续的充要条件
函数连续的充要条件:函数左右连续。
3.在区间的连续性
如果函数 f(x) 在区间 (a,b) 内的每一点都连续,则称函数 f(x)在区间 (a,b) 内连续。
如果函数 f(x) 在区间 [a,b] 内的每一点都连续,并且在左端点 x=a 处右连续,在右端点 x=b 处左连续,则称函数 f(x) 在区间 [a,b] 上连续
4.性质
-
局部性质:
-
如果函数 f(x) 在点 x=a 处连续,则 f(x)在 x=a的某个邻域内有界。
-
-
全局性质:
-
如果函数 f(x) 在区间 [a,b]上连续,则 f(x)在该区间上有界。
-
如果函数 f(x) 在区间 [a,b] 上连续,则 f(x) 在该区间上达到最大值和最小值。
-
如果函数 f(x)在区间 [a,b]上连续,并且 f(a)和 f(b)异号,则存在 c∈(a,b)使得 f(c)=0(零点定理,后边会讲)。
-
5.不连续点
1.定义
2.可去不连续点
如果存在且有限,但 f(a) 不存在或,则称 x=a 是 f(x)的可去不连续点。
3.跳跃不连续点
如果和都存在且有极限,但,则称 x=a 是 f(x) 的跳跃不连续点。
4.无穷不连续点
如果不存在或为无穷大,则称 x=a是 f(x) 的无穷不连续点。
6.闭区间连续函数性质
1.零点定理
设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f(c)=0。
2.介值定理:
设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min(f(a),f(b))<k<max(f(a),f(b))),存在 c∈(a,b) 使得 f(c)=k。
零点定理与介值定理的关系:
零点定理是介值定理的特例:
-
零点定理可以看作是介值定理在 k=0时的特例。
-
如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f(c)=0。
4.导数
1.定义
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
即:
其中:
-
Δx 是一个很小的增量,表示 x 的变化量。
-
是 x 在 x0 点增加 Δx 后的函数值。
-
f(x0) 是 x 在 x0 点的函数值。
-
是函数在 x=x0 处的平均变化率。
-
表示当 Δx 趋近于 0 时的极限。
-
平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是
。这个比值表示函数在这段区间内的平均变化速度。
-
瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。
2.单侧单数
1.左导数
函数 f(x)在点 x=a 处的左导数定义为:
其中 h→0−表示 h 从负方向趋近于 0。
2.右导数
函数 f(x)在点 x=a处的右导数定义为:
其中 h→0+表示 h 从正方向趋近于 0。
3.导数的存在性
函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:
4.导数的几何意义
1.切线
由导数定义可知,f(x)在点 (a,f(a))处的斜率:
所以切线方程可以表示为:
其中:
-
y 是切线上的点的纵坐标。
-
f(a) 是函数在点 x=a 处的值。
-
f′(a) 是函数在点 x=a 处的导数,即切线的斜率。
-
x 是切线上的点的横坐标。
-
a 是切点处的横坐标。
化简切线方程:
将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。
2.法线
是与切线垂直的直线。切线的斜率为f'(a),则法线的斜率为
法线方程的一般形式是:
其中:
-
y 是法线上的点的纵坐标。
-
f(a是函数在点 x=a处的值。
-
f′(a)是函数在点 x=a处的导数,即切线的斜率。
-
x 是法线上的点的横坐标。
-
a 是法线点处的横坐标。
化简法线方程: 将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。
5.可导与连续的关系
1.定义
连续性
一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:
这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。
可导性
一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:
这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。
所以从连续和可导定义看出,可导的条件比连续的条件更严格。
2.定理
1.可导必连续
如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。
证明:如果函数 f(x) 在点 x=a处可导,则
我们要证f(x)在点 x=a 处连续,需要证明
变换上述等式:
所以
2.连续不一定可导
反例:考虑函数 f(x)=∣x|在 x=0处是否可导。
证明:
连续性:
函数是连续的
可导性:
左导数:
右导数:
左右导数不相等,所以函数不是可导的。
6.求导公式
-
常数规则:
其中 c 是常数。
-
幂函数规则:
其中 n 是任意实数。
-
常数倍规则:
其中 c 是常数。
-
和差规则:
-
乘积规则:
-
商规则:
其中 g(x)≠0。
-
链式法则(复合函数求导):
7.常见函数求导
1.指数函数
其中 a>0且 a≠1。
2.对数函数
其中 a>0且 a≠1。
3.三角函数
4.反三角函数
8.高阶导数
高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作
类似地,三阶导数是对二阶导数再求导,记作
以此类推。
1.定义
对于一个函数 f(x),其 n 阶导数定义为:
其中 n是正整数。
2.高阶导数的符号表示
9.隐函数求导
隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
隐函数求导的基本步骤
-
对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。
-
使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数。
-
通过求导得到的方程,解出 dy/dx。
10.参数方程求导
参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:
其中 t 是参数。我们希望求出曲线的导数 dy/dx。
参数方程求导的基本步骤:
5.微分
1.定义
微分是函数在某个变化过程中的改变量的线性主要部分。
若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量
可以表示为
其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,
微分dy可以近似地表示为
它描述了函数值y随自变量x变化而变化的线性部分。
例如:正方形的面积公式
假设正方形的初始边长x=a,然后在a的基础上边长增加一个非常小的改变量△x,此时正方形的边长x=a+△x,正方形增加的面积:
由于△x非常小,所以△x^2可以看作是△x的高阶无穷小,即O(△x),所以:
等式两边同除以△x:
求极限:
极限存在,所以函数可导,即:
AA
完整等式可表示为:
因此,微分dy可以近似地表示为
注意:△y是精确值,dy是近似值。
2.可微的充要条件
函数 f(x) 在点 x=a 处可微的充要条件是:
-
函数在点 x=a处连续:
-
函数在点 x=a 处左右导数存在且相等:
简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。
3.微分公式和法则
根据微分定义
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。
4.微分的几何意义
假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
f'(x)是切线的斜率,dy是△y的近似值,如上图所示,所以
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。
常用的近似公式
:
5.微分中值定理
1.罗尔中值定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在区间端点的函数值相等,即 f(a)=f(b)。
那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0
罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。
2.拉格朗日中值定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b] 上连续。
-
在开区间 (a,b)上可导。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。
罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。
3.柯西中值定理
如果函数 f(x) 和 g(x) 满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在开区间 (a,b) 内,g′(x)≠0。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。
怎么理解柯西中值定理?
将f(x)和g(x)看作是参数方程:
a、b端点连线的斜率为:
根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:
6.洛必达法则
洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。
设函数 f(x)和 g(x 满足以下条件:
-
在点 a 的某个去心邻域内可导,且 g′(x)≠0。
如果
存在(或为无穷大),那么:
7.函数的单调性
函数的单调性可以通过其导数来判定:
-
递增函数: 如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。
-
递减函数: 如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。
8.函数的凹凸性
函数的凹凸性可以通过其二阶导数来判定:
-
凹函数: 如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。
-
凸函数: 如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。
-
拐点:拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。
9.极值
1.定义
极值
是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f(c),则称 f(c) 是函数 f(x) 在点 c 处的局部极小值。
最值
最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f(c),则称 f(c)是函数 f(x)的全局最大值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f(c),则称 f(c)是函数 f(x)的全局最小值。
2.极值的充要条件
必要条件
如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。
充分条件
一阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。
二阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。
6.不定积分
1.定义
如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
表示 f(x) 的所有原函数,通常写成:
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。
不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。
2.基本积分公式
-
常数积分:
(其中 k 是常数)
-
幂函数积分:
(其中 n≠−1)
-
指数函数积分:
-
对数函数积分:
-
三角函数积分:
-
反三角函数积分:
3.换元积分法
1.第一类换元积分法
-
选择合适的变量替换: 选择一个合适的变量替换 u=g(x),使得积分变得更简单。
-
求导数: 求 u 对 x 的导数
并将其改写为
-
替换积分变量: 将原积分中的 x 替换为 u,并将 dx 替换为
-
求解新积分: 求解新的积分
-
回代变量: 将 u 回代为 g(x),得到最终的不定积分结果。
简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。
2.第二类换元积分法
第二类换元积分法通常涉及三角函数替换或带根号形式的替换。
-
选择合适的变量替换: 选择一个合适的变量替换 x=g(t),使得积分变得更简单。
-
求导数: 求 x 对 t 的导数
并将其改写为
-
替换积分变量: 将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。
-
求解新积分: 求解新的积分
-
回代变量: 将 t 回代为
得到最终的不定积分结果。
简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。