数学建模之层次分析法详解(附个人论文)

本文介绍了决策模型在评价类问题中的应用,详细讲解了模型构建的步骤,包括确定评价目标、选择方案、建立判断矩阵、进行一致性检验及权重计算。并通过实例展示了Excel中计算最终得分的过程,讨论了模型的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据清风老师的课程学习,收获很大,https://www.bilibili.com/video/BV1DW411s7wi

1.该模型所解决的问题

评价类问题。(如哪个地方比较好,哪位员工优秀)

2. 使用该模型需要思考的三个基础问题:

  • 评价的目标是什么:
  • 为了达到目标有哪几种可选的方案:
  • 评价的准则或指标是什么(根据什么评价好坏) :

3. 整理出判断矩阵(方阵)

!!这个判断矩阵用于判断评价指标的权重关系

评价指标为景色,花费,居住,饮食,交通
评价指标为景色,花费,居住,饮食,交通,按照右表进行打分。

  • 注:
    aij的意义:与指标j相比,i的重要程度
    当i=j时,两个指标相同,因此同等重要记为1,即对角线为1
    aij>0且aij*aji=1(正互反矩阵)

4. 整理出判断矩阵

!!这个矩阵用于判断可选方案在评价指标上的优劣

在这里插入图片描述

5.进行一致性检验

因为各行和各列之间只是参照的单位一不同,所以,各行和各列之间应该成倍数关系,但是,仍有不成倍数关系的矩阵,所以我们要做一致性检验。

如何检验一致性?
  • a.计算一致性指标CI=(λmax - n)/(n-1)
    (λmax是最大特征值)
  • b.查找平均一致性指标RI
    附上表查询地址:https://wenku.baidu.com/view/0fa59423336c1eb91b375d32.html
  • c.计算一致性比例CR=CI/RI
    如果CR<0.1,则一致性可以接受,否则需要修正。

6. 对判断矩阵进行归一化处理求权重。

a. 一致矩阵随便,挑一列算就行(因为各列成比例)
b. 不一致的矩阵,通过以下公式计算

  • A.算术平均法:
    在这里插入图片描述
    这个公式用人话说就是:先每列都归一化,再每个列相加,再除n
  • B.几何平均法:
    在这里插入图片描述
  • C.特征值法:
    求出最大特征值对应的特征向量,对向量归一化处理

7. 使用EXCEL继续最终得分

加权相乘即可,使用EXCEL可以算的快点。

8. 局限性

  • a. 决策层不能太多,否则判断矩阵和一致性矩阵相差可能会很大
  • b. 决策层中的指标的数据是已知的,不能用

9.论文

纯个人练习
https://download.csdn.net/download/LoneySmoke/12295863

<think>好的,用户正在寻找关于层次分析法(AHP)在数学建模方面的论文或资料,特别是示例下载。首先,我需要确认用户的具体需求。他们可能正在准备数学建模比赛,比如美赛,需要学习如何使用AHP方法,并参考实际论文的结构和内容。用户提到“层次分析法 数学建模 论文 示例 下载”,所以需要提供获取这些资源的途径。 接下来,我要回忆系统给出的引用内容。引用1提到AHP在美赛中的应用,比如供应商选择和项目评估,这可能帮助用户理解AHP的实际应用场景。引用3详细介绍了构建层次结构的步骤,这对用户撰写论文的结构部分有帮助。引用4强调了数据来源和一致性检验的重要性,这可能在论文的方法部分需要详细说明。引用5给出了计算一致性指标的公式,用户可能需要这个来验证他们的模型。 用户可能需要具体的示例论文,但直接提供下载链接可能涉及版权问题。因此,我应该推荐合法的资源平台,如知网、万方、百度学术等,如引用4中提到的。此外,英文数据库如Web of Science和SpringerLink也是不错的选择,特别是如果用户需要国际比赛的资料。 另外,用户可能需要了解如何构建层次结构、计算权重以及进行一致性检验。引用3中的步骤和引用5的公式是关键点。同时,引用2提到AHP的局限性,比如处理模糊信息的能力不足,可能需要介绍FAHP或灰色系统理论作为扩展,这可以成为用户论文中的讨论部分。 还需要注意,用户可能希望论文示例中包含具体的表格和计算过程,如引用4提到的判断矩阵和一致性检验表格。建议用户参考这些元素来增强论文的可信度。 最后,要确保回答结构清晰,分步骤说明如何获取资料、论文结构要点以及相关工具和数据库推荐。同时,生成的相关问题需要覆盖AHP的步骤、优缺点、实际应用案例和与其他方法的结合,帮助用户全面了解该主题。</think>以下是为您整理的层次分析法(AHP)在数学建模中的论文资源获取指南及相关要点: ### 一、论文/资料获取途径 1. **中文数据库** - 知网(CNKI):搜索关键词"层次分析法 数学建模 案例"可获取学位论文和期刊文献[^4] - 万方数据:推荐筛选"数学建模竞赛"+"AHP"组合关键词 - 百度学术:可免费获取部分公开论文,例如搜索《基于AHP的XXX模型构建》 2. **英文资源** - SpringerLink:检索"Analytic Hierarchy Process mathematical modeling case study" - IEEE Xplore:查看近年国际建模竞赛优秀论文[^1] 3. **竞赛资源平台** - COMAP官网(美国大学生数学建模竞赛主办方)提供历年优秀论文摘要 - 校际数学建模论坛常分享AHP应用案例(如运输优化、风险评估等)[^3] ### 二、典型论文结构示例 ```markdown 1. 问题描述 - 明确决策目标(如选址评估、方案优选) 2. 层次结构构建 - 目标层:$G$(最终决策目标) - 准则层:$C_1,C_2,...,C_n$(评价指标) - 方案层:$A_1,A_2,...,A_m$(候选方案) 3. 判断矩阵构建 - 采用1-9标度法建立矩阵$M=(a_{ij})_{n×n}$ 4. 权重计算 - 特征向量法:解方程$Mw=\lambda_{max}w$[^5] 5. 一致性检验 - 计算$CI=\frac{\lambda_{max}-n}{n-1}$,当$CR=CI/RI<0.1$时通过检验[^5] 6. 结果分析 - 敏感性分析展示权重变化对结果的影响 ``` ### 三、关键工具推荐 1. **计算工具** - MATLAB:`eig()`函数求解特征向量 - Excel:数据透视表处理判断矩阵 - 在线计算器:AHP在线计算工具(如bpmsg.com/ahp) 2. **绘图工具** - ProcessOn绘制层次结构图 - Visio绘制决策流程图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值