cadence SPB17.4 - 导入正常的CIS库

SPB17.4导入CIS库指南

cadence SPB17.4 - 导入正常的CIS库

概述

本地的原理图库以前都在正常用。
重装了cadence SPB 17.4, 重装完的SPB17.4中是没有自己的原理图库的。
想将自己正常用的原理图库,配置进新安装的SPB17.4

笔记

指定焊盘库和PCB库

PCB Editor 17.4中,指定焊盘库和PCB库
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

建立原理图库.mdb的ODBC数据源

如果将SPB17.4卸载了,大概率是没有原来建立的原理图库.mdb的数据源了,需要重新建立数据源。
也有可能数据源还在,但是自己想不起数据源叫啥名字。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
新建数据源时,选定mdb驱动,然后指定自己的原理图库.mdb就行。

修改.dbc中的数据源名称

在这里插入图片描述
在这里插入图片描述

在capture CIS中指定.DBC

在这里插入图片描述
空的captrue是无法设置.dbc时,必须打开一个原理图才行
在这里插入图片描述
在这里插入图片描述

指定配置文件中的原理图库(.olb)的路径

capture启动后,在session log窗口可以看到使用的capture.ini的位置。
在这里插入图片描述
在这里插入图片描述
如果没指定,在放置数据库元件时,点击到对应元件,元件整行就是红的,会弹框报错,在框里面有个浏览按钮,自己选一下,SPB17.4也会更新到capture.ini中。
在这里插入图片描述
封装库的路径,在capture.ini中也有,不过默认的不是自己的封装库路径,也改一下。

备注

上次为了找冰沙主板只烧录了bootloader的情况下,连上开发机就显示未知的USB设备的问题。为了排查问题,怀疑软件自己装的USB驱动有问题,将大部分软件都卸载掉了。结果最后排查完,发现板子本身有问题。

其实,板子是好的,只有bootloader, 板子连上开发机,也有可能出现"未知USB设备"的问题,每台计算机情况不一样。
原因: 如果只有bootloader, bootloader本身没有模拟USB设备的功能。但是USB接口的D+可能由于GPIO默认的初始化状态,可能将D+拉高了。引起开发机误认为有USB设备连接上来了。

如果开发机上装的东西多了,还真不要随便卸载。重新装起来挺细碎的。
如果因为排查问题,刚需要卸载已有的软件,那真没招。

END

卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接与卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权与非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维与空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展与泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位与识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位与病理分析 - 结构化文本处理:与循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展与大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界与学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值