pat1049Counting Ones (30)

56 篇文章 0 订阅
本文介绍了一种高效算法,用于计算从1到任意正整数N之间所有数字中出现数字1的总次数。通过巧妙地将问题分解至每位数,并根据不同位数上数字1出现的情况进行数学归纳,避免了传统遍历方式导致的时间复杂度过高问题。
摘要由CSDN通过智能技术生成

题意分析:

(1)给出一正整数N,求从1到N之间的所有数当中含有1的个数

(2)此题最容易想到的是从1到N遍历,求每个数中包含1的个数,但这样在数字比较大时,肯定超时。如果不遍历,那要怎么去求呢?这就需要寻找数学规律了。我们先从每一位开始:求当某个位置为1时共有有多少个数.以百为为例,如12145、12045、12145.即可能存在三种情况:

①若此数百位本身就等于1,如12145,则大于等于100的有100~199、1100~1199、2100~2199...、11100~11199,另外还有12100~12145;所以当百位为1时,分高位部分和低位部分,即百位为1的数有12*100+45+1个;

②若百位等于0,如12045,则大于等于100的有100~199、1100~1199、2100~2199...、11100~11199,即百位为1的数有12*100个

③若百位大于1,则12345,则大于等于100的有100~199、1100~1199、2100~2199...、11100~11199、12100、12199,即百位为1的数有(12+1)*100个

(3)然后按照此思路同样去求其他位置为1的个数

可能坑点:

(1)此种思路很不容易想到,但要是抓住计算某一个位置为1的个数,在统计总数还是比较容易找到突破口的

(2)暴力肯定超时

#include <iostream>
using namespace std;

int getOnes(int N)
{
    int cnt=0,i=1;
    int index,high,low;
    while(N/i!=0)
    {
        high=N/(i*10);
        low=N-(N/i)*i;
        index=(N/i)%10;
        if(index==0)cnt+=high*i;
        if(index==1)cnt+=high*i+low+1;
        if(index>1)cnt+=(high+1)*i;
        i=i*10;
    }
    return cnt;
}

int main()
{
    int N;
    cin>>N;
    cout<<getOnes(N)<<endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值