NLP之TextRNN(预测下一个单词)

TextRNN

1.基本概念

1.1 RNN和CNN的区别

并非刚性地记忆所有固定⻓度的序列,⽽是通过隐藏状态来存储之前时间步的信息

1.2 RNN的几种结构

一对一,一对多,多对一,多对多(长度相等/不等)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zcslsHGl-1662651486693)(img/RNN-%E5%87%A0%E7%A7%8D%E7%BB%93%E6%9E%84.png)]

多个输入时,由a和x生成y和下一个a, 这一过程可以用nn.GRU和nn.LSTM模块表示,即可使用门控制单元或长短记忆模型,因此BiLSTM也可看作BiRNN+LSTM(编程时,双向和单向的不同就是在nn.LSTM()中添加一个bidirectional=True)

1.3 多对多的RNN

先输入零向量 a < 0 > a^{<0>} a<0>,然后前向传播,先计算激活值 a < 1 > a^{<1>} a<1>,然后计算 y < 1 > y^{<1>} y<1>.

a < 1 > = g 1 ( W a a a < 0 > + W a x x < 1 > + b a ) a^{<1>}=g_1(W_{aa}a^{<0>}+W_{ax}x^{<1>}+b_a) a<1>=g1(Waaa<0>+Waxx<1>+ba)

y < 1 > = g 2 ( W y a a < 1 > + b y ) y^{<1>}=g_2(W_{ya}a^{<1>}+b_y) y<1>=g2(Wyaa<1>+by)

1.4 RNN的多对多结构

在这里插入图片描述

1.5 RNN的多对一结构

1.2 RNN的几种结构可以看到多对一RNN和多对多RNN的不同之处,但是在训练中仍然把多对一RNN当作多对多RNN训练,只是不使用最后训练出的 y < 1 > y^{<1>} y<1>~ y < t − 1 > y^{<t-1>} y<t1>

1.6 RNN的缺点

如果训练非常深的神经网络,对这个网络做从左到右的前向传播和而从右到左的后向传播,会发现输出 y < t > y^{<t>} y<t>很难传播回去,很难影响前面的权重,这样的梯度消失问题使得RNN常常出现局部效应,不擅长处理长期依赖的问题
和梯度爆炸不同的是,梯度爆炸会使得参数爆炸,很容易就发现大量的NaN参数,因此可以很快地进行梯度修剪;但是梯度消失不仅难以察觉,而且很难改正

2.实验

2.1 实验步骤

  1. 数据预处理,得到单词字典、样本数等基本数据
  2. 构建RNN模型,设置输入模型的嵌入向量维度和隐藏层α向量的维度
  3. 训练
    1. 代入数据,设置每个样本的时间步长度
    2. 得到模型输出值,取其中最大值的索引,找到字典中对应的单词,即为模型预测的下一个单词.
    3. 把模型输出值和真实值相比,求得误差损失函数,运用Adam动量法梯度下降
  4. 测试

2.2 算法模型

在这里插入图片描述

"""
Task: 基于TextRNN的单词预测
Author: ChengJunkai @github.com/Cheng0829
Email: chengjunkai829@gmail.com
Date: 2022/09/08
Reference: Tae Hwan Jung(Jeff Jung) @graykode
"""

import numpy as np
import torch, os, sys, time
import torch.nn as nn
import torch.optim as optim

'''1.数据预处理'''
def pre_process(sentences):
    # 分词
    word_sequence = " ".join(sentences).split()
    # 去重
    word_list = []
    '''
    如果用list(set(word_sequence))来去重,得到的将是一个随机顺序的列表(因为set无序),
    这样得到的字典不同,保存的上一次训练的模型很有可能在这一次不能用
    (比如上一次的模型预测碰见i:0,love:1,就输出dog:2,但这次模型dog在字典3号位置,也就无法输出正确结果)
    '''
    for word in word_sequence:
        if word not in word_list:
            word_list.append(word)
    # 字典
    word_dict = {w:i for i, w in enumerate(word_list)}
    word_dict["''"] = len(word_dict)
    number_dict = {i:w for i, w in enumerate(word_list)}
    number_dict[len(number_dict)] = "''"
    word_list.append("''")
    num_words = len(word_dict) # 词库大小:8
    # 本实验不采用随机抽样,所以batch_size等于样本数
    batch_size = len(sentences) # 样本数:5
    # print(word_dict)
    # print(number_dict)
    # print(word_list)
    return word_sequence, word_list, word_dict, number_dict, num_words, batch_size 

'''根据句子数据,构建词元的嵌入向量及目标词索引'''
def make_batch(sentences,mode='train'):
    # 和Word2Vec的random_batch基本一致,区别在于不随机
    input_batch = []
    target_batch = []

    for sen in sentences:
        words = sen.split() # 分词
        for i in range(len(words)):
            if(words[i] not in word_list):
                words[i] = "''"

        if mode == 'train':        
            input = [word_dict[n] for n in words[:-1]] # 创建最后一个词之前所有词的序号列表
            input_batch.append(np.eye(num_words)[input]) # 最后一个词之前所有词的嵌入向量
            target = word_dict[words[-1]] # 每个目标词的序号
            target_batch.append(target) # 记录每个目标词的序号
        else:
            input = [word_dict[n] for n in words] # 创建所有词的序号列表
            input_batch.append(np.eye(num_words)[input]) # 所有词的嵌入向量
    input_batch = torch.FloatTensor(np.array(input_batch))
    target_batch = torch.LongTensor(np.array(target_batch))
    input_batch = input_batch.to(device)
    target_batch = target_batch.to(device)
    return input_batch, target_batch

'''2.构建模型:多对一RNN(本实验结构图详见笔记)'''
class TextRNN(nn.Module):
    def __init__(self):
        super().__init__()
        '''nn.RNN(input_size, hidden_size, num_layers=1, bidirectional=False)
        Args:
            input_size : 嵌入向量维度
            hidden_size : 隐藏层alpha维度(隐藏层的神经元个数)
            num_layers=1 : 循环层数.设置num_aayers=2将意味着将两个RNN堆叠在一起,
                其中第二个RNN接受第一个RNN的输出并计算最终结果(Default:1)
            bidirectional: If ``True``, becomes a bidirectional RNN.(Default:False)
        '''
        '''nn.RNN:[嵌入向量维度, 隐藏层alpha维度]'''
        # 即x的维度和α的维度
        self.rnn = nn.RNN(input_size=num_words, hidden_size=hidden_size) # (8,4)
        '''Weight:[隐藏层alpha维度, 嵌入向量维度]'''
        self.Weight = nn.Linear(hidden_size, num_words, bias=False) # (4,8)
        self.bias = nn.Parameter(torch.ones([num_words]))

    '''每个样本输入的单词数和模型的时间步长度相等'''
    def forward(self, X, hidden): # model(input_batch, hidden)
        '''transpose(~) 矩阵转置
        X(input_batch):[5,2,8] -> transpose -> [2,5,8]
        '''
        X = X.transpose(0,1) # 第0维和第1维转置
        # X : [n_step, batch_size, num_words]
        '''X:[输入序列长度(时间步长度),样本数,嵌入向量维度] -> [2,5,8]'''
        '''hidden即为alpha'''
        '''
        RNN:(8,4) X:(2,5,8) hidden:(1,5,4) -> alpha_outputs:(2,5,4) alpha_t:(1,5,4)
        alpha_t是最后一个时间步的输出 : [1,样本数,隐藏层alpha维度(隐藏层的神经元个数)] -> [1,5,4]
        alpha_outputs存储所有时间步的输出,所以alpha_outputs[-1]和alpha_t值一样(除了前者[5,4]后者[1,5,4])
        本实验为多对一,所以仅需alpha_t,若为多对多,则需要对alpha_outputs中每个alpha求y=W(alpha)+b
        '''
        alpha_outputs, alpha_t = self.rnn(X, hidden) # alpha_t:[batch_size, num_directions(=1)*hidden_size]
        alpha_outputs = alpha_outputs.to(device)
        # Weight:[隐藏层alpha维度, 嵌入向量维度] alpha_t:[1,样本数,隐藏层alpha维度]
        # Weight:[4,8] alpha_t:[1,5,4] Weight(alpha_t):[5,8]
        # Y_t:[样本数,各单词的概率] -> [5,8] 最大值所在索引即为预测的单词索引
        # alpha_t[0]==alpha_outputs[-1]
        '''既可以使用alpha_t[0],也可以使用alpha_outputs[-1]'''
        Y_t = alpha_outputs[-1] 
        Y_t = self.Weight(Y_t) + self.bias # self.bias:(num_words,) (8,)
        return Y_t

if __name__ == '__main__':
    hidden_size = 4 # 隐藏层alpha维度(隐藏层的神经元个数)
    device = ['cuda:0' if torch.cuda.is_available() else 'cpu'][0]
    sentences = ["i like dog", "i love coffee", "i love coffee", "you love cloud", "i hate milk"]
    
    '''1.数据预处理'''
    word_sequence, word_list, word_dict, number_dict, num_words, batch_size = pre_process(sentences)
    input_batch, target_batch = make_batch(sentences)

    '''2.构建模型'''
    model = TextRNN()
    model.to(device)
    criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
    optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam动量梯度下降法

    if os.path.exists('model_param.pt') == True:
        # 加载模型参数到模型结构
        model.load_state_dict(torch.load('model_param.pt', map_location=device))

    '''3.训练'''
    print('{}\nTrain\n{}'.format('*'*30, '*'*30))
    loss_record = []
    for epoch in range(1000):
        optimizer.zero_grad() # 把梯度置零,即把loss关于weight的导数变成0

        # hidden : [num_layers(=1)*num_directions(=1), batch_size, hidden_size]
        '''hidden:[层数*网络方向,样本数,隐藏层的维度(隐藏层神经元个数)] -> [1,5,4]'''
        # α_0常以零向量输入
        hidden = torch.zeros(1, batch_size, hidden_size).to(device) # (1,5,4)
        '''input_batch:[样本数,输入序列长度(时间步长度), 嵌入向量维度] -> [5,2,8]'''
        output = model(input_batch, hidden) # [batch_size, num_words]
        loss = criterion(output, target_batch) # 将输出与真实目标值对比,得到损失值
        loss.backward() # 将损失loss向输入侧进行反向传播,梯度累计
        optimizer.step() # 根据优化器对W、b和WT、bT等参数进行更新(例如Adam和SGD)

        if loss >= 0.01: # 连续30轮loss小于0.01则提前结束训练
            loss_record = []
        else:
            loss_record.append(loss.item())
            if len(loss_record) == 30:
                torch.save(model.state_dict(), 'model_param.pt')
                break   

        if ((epoch+1) % 100 == 0):
            print('Epoch:', '%04d' % (epoch + 1), 'Loss = {:.6f}'.format(loss))
            torch.save(model.state_dict(), 'model_param.pt')

    '''4.测试'''
    print('{}\nTest\n{}'.format('*'*30, '*'*30))
    sentences = ["i like", "i hate", "you love", "you love my", "you"]
    for sen in sentences: # 每个样本逐次预测,避免长度不同
        hidden = torch.zeros(1, 1, hidden_size).to(device)
        input_batch, target_batch = make_batch([sen], mode='predict')
        
        # 代码功能时预测下一个单词,所以每个样本只生成一个单词
        predict = model(input_batch, hidden) # [1,10] [1,dict_size]
        predict = predict.data.max(1, keepdim=True)[1]  #[1,1]
        
        result = predict.squeeze().item() # tensor([[~]]) -> tensor(~) -> ~
        print(sen + ' -> ' + number_dict[result])

'''
为什么训练集句子长度都是2,但是测试集可以不是?
    make_batch的input_batch维度是[batch_size(样本数), n_step(样本单词数),n_class]
    n_step是输入序列长度,之前疑惑为什么只有2个rnn单元,却可以输入其他个数的字母,

    实际上,模型并没有把时间步作为一个超参数,也就是时间步随输入样本而变化,在训练集中,n_step均为2,
    但是,在测试集中,三个单词都是分别作为样本集输入的,也就是时间步分别为2,2,2,3,1
    最后在self.rnn(X, hidden)中,模型会自动根据X的序列长度,分配时间步

    但由于是一次性输入一个样本集,所以样本集中各个样本长度必须一致,否则报错
    因此必须把预测的sentences中各个句子分别放进容量为1的样本集单独输入

    需要指出的是,由于模型训练的是根据2个单词找到最后以1个单词,训练的是2个时间步之间的权重,
    所以如果长度不匹配,即使单词在训练集中,也不能取得好的结果,比如"you"的预测结果不是训练集中的"love"
'''

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值