【论文笔记】Group-Skeleton-Based Human Action Recognition in Complex Events

GS-GCN算法提出了一种新的方法,用于复杂事件中的动作识别,考虑了不同人之间的潜在行为关系。通过MS-G3D提取多人骨骼特征,并结合MLP将距离值嵌入特征中,以增强动作关系的表示。使用焦点损失进行训练以解决类别不平衡问题,提高识别准确性。
摘要由CSDN通过智能技术生成

Group-Skeleton-Based Human Action Recognition in Complex Events


一种新的基于GCN的算法GS-GCN,用于复杂事件中的动作识别,针对复杂事件挑战中大规模以人为中心的视频分析的解决方案。与仅考虑单个人的行为的常规方法不同,所提出的方法研究了不同人之间的潜在行为关系。使用多个MS-G3D从多个人中同时提取骨骼特征。由于近距离的人可以具有更强的动作关系,因此使用MLP将距离值嵌入到提取的特征中。经过特征融合步骤后,对焦点损失进行训练,以对不同的动作进行分类。第一个将群组骨架数据与GCN结合起来以进行动作识别。

现有skeleton-based忽视了不同人之间潜在的动作关系,而一个人的动作很可能受到另一个人的影响。

  1. group-skeleton-based:利用MS-G3D提取多人骨骼特征。除了传统关键点坐标外,文章也把关键点速度值输入到网络中以获得更好的性能。
  2. 用多层感知器MLP将参考人与其他人之间的距离值嵌入提取的特征中。
  3. 所有特征被送入到另一个MS-G3D来进行特征融合分类。

为了避免分类不平衡问题,网络进行有焦点损失的训练。

RGB图像提取空间特征在其他帧中可能丢失细节;直接使用RGB帧可能会引入来自不同背景和任务外观的干扰,这些对于动作分类来说可能是噪声。

人运动较大时光流序列容易受到遮挡问题影响。

skeleton-based:GCN可以有效获取不规则的骨架关键点并在时空域提取特征;没有考虑到视频中不同人物之间潜在动作关系。

在这里插入图片描述

首先检测视频中的任务并预测他们的姿势;然后将关键点位置和速度值输入MS-G3D提取特征,由于距离较近的人应该有较强的动作关系,还在提取的特征中嵌入了参照人与其他人之间的距离值。另一个MS-G3D融合所有功能。最后,通过全连通层输出分类结果。

  1. Action Recognition Using Group-Skeleton Data

    k k k个人的第 i i i个关键点的速度值 v i k v_i^k vik v i k ( t ) = p i k ( t ) − p i k ( t − d ) v_{i}^{k}(t)=p_{i}^{k}(t)-p_{i}^{k}(t-d) vik(t)=pik(t)pik(td),其中 p i k p_{i}^{k} pik是第 k k k个人的第 i i i个关键点的坐标, t t t表示帧索引, d d d表示计算关键点速度的帧间隔。参考人k=0。如果在较长时间间隔内某些关键点移回原始位置,d=3。将所有有效的 i i i, t t t p i k ( t ) p_i^k(t) pik

"Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition" 是一篇关于基于骨架的动作识别的论文。如果要提出改进方法,可以考虑以下几个方向: 1. 模型结构改进:可以尝试改进论文中提出的Channel-wise Topology Refinement Graph Convolution模块。例如,可以探索更复杂的图卷积模型结构,引入更多的注意力机制或者跨层连接,以提高模型对骨架数据的建模能力。 2. 数据增强和预处理:骨架数据可能存在缺失或者噪声,可以尝试使用数据增强技术(如旋转、平移、缩放)来增加数据的多样性和鲁棒性,或者使用预处理技术(如滤波、插值)来处理数据中的噪声和缺失。 3. 图结构优化:可以尝试优化骨架数据的图结构表示。例如,可以使用图剪枝算法来去除冗余的边或节点,或者使用图生成算法来自动构建更准确的图结构。 4. 跨模态信息融合:可以考虑将骨架数据与其他传感器数据(如深度图像或RGB图像)进行融合。通过融合不同模态的信息,可以提高对动作的理解和识别能力。 5. 模型训练优化:可以探索更有效的模型训练方法,例如引入更合适的损失函数或者优化算法。此外,可以尝试使用迁移学习或领域自适应的方法,将从其他相关任务或领域中学到的知识迁移到骨架动作识别任务中。 以上是一些可能的改进方向,具体的改进方法需要根据具体问题和实验结果来确定。同时,也可以参考相关领域的最新研究和技术进展,以获取更多的启发和创新点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值