1. Zernike多项式简介
泽尼克多项式是在单位圆盘上形成完全正交集的连续函数序列。它们是以荷兰物理学家Frits Zernike的名字命名的,Frits Zernike是1953年诺贝尔物理学奖的获得者,也是相衬显微镜的发明者。由于大多数光学系统都有圆孔,因此泽尼克多项式在波前分析中很有用,因此在光学中起着重要的作用。Zernike多项式一般可分为两种基本类型,即Zernike圆多项式和Zernike环形多项式,它们分别定义在单位圆盘和环形单位圆盘上。Zernike圆多项式最早由Zernike于1934年作为描述相对比法的二阶旋转不变偏微分方程的特征函数引入[1,2],由Bhatia和Wolf于1954年根据正交性和不变性的要求导出[3]。Zernike环形多项式最早出现在Perkin-Elmer公司1971年的报告中[4],Tatian于1976年从透镜设计的角度讨论了环形瞳孔光学系统的像差平衡[5]。马哈詹在1981年系统地研究并明确地给出了它们[4]。
Zernike多项式经过介绍后逐渐引起了人们的兴趣,在光学和图像处理中得到了广泛的应用。1942年,Zernike的博士生Bernard Nijboer将对称光学系统的像差函数展开为一系列Zernike多项式,并给出了点物体在像面上复振幅分布的有效表示[6]。这项工作允许对一般光学系统的衍射积分和点扩展函数(PSF)进行分析评估,并被称为Nijboer-Zernike理论。然而,Nijboer-Zernike理论仅在小像差的情况下有效,并且只能在接近几何焦点的位置产生准确的结果。70年后,Janssen用幂-贝塞尔级数给出了一般表达式,并将Nijboer-Zernike理论推广到大像差光学系统[8]。推广的Nijboer-Zernike理论可以解析地计算由Zernike系数描述的像差光学系统的PSF,加速了聚焦场衍射理论的进一步发展。像差衍射理论的发展完全依赖于解析推导,而基于泽尼克多项式的波前分析则依赖于计算机的使用。20世纪70年代,随着自适应光学的兴起,Noll通过对多项式进行归一化和排序,提出了一组修正的Zernike多项式,用于大气湍流引起的波前像差的统计分析[9]。
与此同时,亚利桑那大学的Loomis在干涉图处理软件FRINGE中引入了Zernike多项式的重排序子集,用于干涉测量中的波前分析[10,11]。该子集称为Zernike Fringe集,仅包含37项,但与经典像差具有良好的对应关系。1980年,蒂格将泽尼克多项式的应用从光学到图像处理,并开创了泽尼克矩,它具有旋转不变性,可以用作模式识别的形状描述符[12]。泽尼克矩从那时起就成为图像分析的一个有价值的形状描述符。进入21世纪后,泽尼克多项式的发展逐渐成熟,为了促进有效的交流,美国国家标准协会(ANSI)[13,14]和国际标准化组织(ISO)[15-17]对几个泽尼克集进行了标准化。
泽尼克多项式的广泛应用源于其独特的数学性质。首先,泽尼克多项式在单位圆上是正交的。正交性使得波前函数的展开系数与项数无关[18]。这也使波前的方便的数学操作,如加法,减法,平移,旋转和缩放。其次,虽然在单位圆盘上也存在其他正交多项式,但泽尼克多项式的独特之处在于它与经典像差(如像散、彗差和球差)有良好的对应关系[19,20]。
这使得波前像差的快速分类和量化成为可能。第三,基于(扩展的)Nijboer-Zernike理论[6,8,21],可以从波前像差的Zernike展开系数解析计算出系统PSF,因此Zernike多项式使得光学系统像质量的评估变得容易。此外,在斜率敏感波前传感器中,Zernike多项式可以作为波前重建的基集,如Shack-Hartmann波前斜率传感器[22,23]和侧向剪切干涉仪[24],它们是眼科光学和自适应光学中重要的波前传感工具。
如今,世界各地的作者和权威都在使用各种泽尼克多项式的索引。著名的包括Noll索引[9,25]、OSA/ANSI索引[13 - 15,17,26,27]、Fringe/亚利桑那大学索引[10,19]、ISO 14999索引[16,28]、Born和Wolf索引[29]和Malacara索引[30,31]。每一种索引方案采用不同的命名、规范化和索引策略,甚至坐标系统也可能不同,这给使用多项式的研究人员带来了很大的困惑,阻碍了有效的交流。此外,过去几十年发展起来的泽尼克多项式的数学性质,如导数、傅里叶变换和递归关系,在文献中是分散的,没有工作总结这些结果。这促使我们准备了一篇关于泽尼克多项式的综述论文,目的是澄清不同指标的混淆,总结数学性质,调查最先进的应用,并为这个社区的科学家和工程师提供快速参考指南。

泽尼克多项式历史上的关键事件
Zernike多项式的索引方式及其应用主题,如下图所示:

Zernike多项式的索引方式及其应用主题
本文首字母缩略词和符号列表,如下所示:

首字母缩略词和符号列表
2. Zernike多项式的不同索引方式
以下为不同索引方式的Zernike多项式:
2.1 Noll Zernike polynomials(Zemax里的Zernike standard polynomials)[25,36]:

Noll索引方式的前37项标准正交泽尼克圆多项式

在Noll索引方式下非归一化Zernike圆多项式的前六阶
2.2 OSA/ANSI Zernike polynomials(COMSOL射线光学模块)[14,27,39]

OSA/ANSI索引下的前37项Zernike多项式
2.3 Fringe Zernike polynomials(Zemax、CODE V、OSLO、MetroPro里的Zernike fringe polynomials)[19,25,29]

Zernike圆多项式的Fringe索引集
2.4 ISO-14999 Zernike polynomials(CODE V里的Extended fringe Zernike polynomials)[16,28]

ISO-14999索引下的前37项Zernike圆多项式
2.5 Born and Wolf Zernike polynomials(CODE V里的Standard Zernike polynomials)[29]

Born和Wolf索引下的前37项Zernike圆多项式
2.6 Malacara Zernike polynomials(Malacara索引方式)[31]

Malacara指标下的前37项Zernike圆多项式
3. 总结
下表从坐标系、归一化和排序策略三方面对Zernike圆多项式的不同标度方案进行了比较和总结,可以看到不同光学设计软件中所使用的Zernike polynomials及其索引方式:

实域上泽尼克圆多项式不同指标的比较
特别地,多项式在不同指标下的排序如图所示为前几阶。

不同索引的低阶序列的比较
下图展示了这六种索引的参考文献来源和应用:

不同索引方式及其参考文献总结(ZPs表示泽尼克多项式)
参考文献:
[1] Zernike F 1934 Mon. Not. R. Astron. Soc. 94 377–84
[2] Zernike F 1934 Physica 1 689–704
[3] Bhatia A B and Wolf E 1954 Math. Proc. Camb. Phil. Soc. 50 40–48
[4] Mahajan V N 1981 J. Opt. Soc. Am. 71 75–85
[5] Tatian B 1974 J. Opt. Soc. Am. 64 1083–91
[6] Nijboer B R A 1942 PhD Thesis University of Groningen
[7] Mir M, Bhaduri B, Wang R, Zhu R and Popescu G 2012 Quantitative Phase Imaging (Amsterdam: Elsevier) ch 3
[8] Janssen A J E M 2002 J. Opt. Soc. Am. A 19 849–57
[9] Noll R J 1976 J. Opt. Soc. Am. 66 207–11
[10] Loomis J S 1976 FRINGE User’s manual, Version 2 (Tucson: Optical Sciences Center, University of Arizona)
[11] Loomis J 1978 A Computer Program for Analysis of Interferometric Data (Philadelphia: American Society for Testing and Materials)
[12] Teague M R 1980 J. Opt. Soc. Am. 70 920–30
[13] ANSI Z80.28–2004 2004 Ophthalmics—methods of reporting optical aberrations of eyes
[14] ANSI Z80.28–2017 2017 Ophthalmics—methods of reporting optical aberrations of eyes
[15] ISO 24157:2008(E) 2008 Ophthalmic optics and instruments—reporting aberrations of the human eye
[16] International Organization for Standardization (ISO) 2019 ISO/TR 14999–2:2019(E) Optics and photonics—interferometric measurement of optical elements and optical systems—Part 2: measurement and evaluation techniques
[17] ISO 24157:2008/Amd 1:2020 2020 Ophthalmic optics and instruments—reporting aberrations of the human eye
[18] Dai G M 2008 Wavefront Optics for Vision Correction (Bellingham, WA: SPIE Optical Engineering Press)
[19] Wyant J C and Creath K 1992 Basic Wavefront Aberration Theory for Optical Metrology (New York: Academic)
[20] Alonso J, Gómez-Pedrero J A and Quiroga J A 2019 Modern Ophthalmic Optics (Cambridge: Cambridge University Press)
[21] Nijboer B R A 1947 Physica 13 605–20
[22] Southwell W H 1980 J. Opt. Soc. Am. 70 998–1006
[23] Liang J, Grimm B, Goelz S and Bille J F 1994 J. Opt. Soc. Am. A 11 1949–57
[24] Dai F, Tang F, Wang X, Sasaki O and Feng P 2012 Appl. Opt. 51 5028–37
[25] Zemax 2018 Zemax OpticStudio 18.4 User Manual pp 990–1000
[26] Thibos L N, Applegate R A, Schwiegerling J T and Webb R 2000 OSA Vision Science and Its Applications (Santa Fe, New Mexico, United States) (Standards for Reporting the Optical Aberrations of Eyes)
[27] Thibos L N, Applegate R A, Schwiegerling J T and Webb R 2002 J. Refract. Surg. 18 652–60
[28] International Organization for Standardization (ISO) 2005 Optics and photonics—interferometric measurement of optical elements and optical systems—Part 2: measurement and evaluation techniques
[29] Synopsys Inc 2017 CODE V V11.1 Reference Manual: Appendix A Zernike Polynomials
[30] Malacara-Hernández D 1978 Appendix II. Zernike Polynomials and Wavefront Fitting (Hoboken, NJ: Wiley)
[31] Malacara-Hernández D and DeVore S L 1992 Interferogram Evaluation and Wavefront Fitting (Hoboken, NJ: Wiley) ch 13
[32] Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press)
[33] Lakshminarayanan V and Fleck A 2011 J. Mod. Opt. 58 545–61
[34] Wang J Y and Silva D E 1980 Appl. Opt. 19 1510–8
[35] Mahajan V N 1994 Appl. Opt. 33 8121–4
[36] Mahajan V N 2007 Zernike Polynomials and Wavefront Fitting (Hoboken, NJ: Wiley) ch 13
[37] Mahajan V N and Dai G M 2007 J. Opt. Soc. Am. A 24 2994–3016
[38] COMSOL 2018 Ray optics module User’s guide pp 156–8
[39] Sinjab M M and Cummings A B 2018 Introduction to Wavefront Science (Berlin: Springer) ch 2
(本文为CSDN“光学码农”原创,转载须注明本文网址,违者必究!)