所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。
给定 a 所在的区间 [m,n],是否存在缘分数?
输入格式:
输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。
输出格式:
按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution
。
输入样例 1:
8 200
输出样例 1:
8 3
105 10
输入样例 2:
9 100
输出样例 2:
No Solution
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
【代码】
#include <iostream>
#include <cmath>
using namespace std;
int print_luck(int i);
int main()
{
int m, n;
cin >> m >> n;
int i = 0;
int ct = 0;
for (i = m; i <= n; i++)
{
ct += print_luck(i);
}
if (ct == 0)
cout << "No Solution" << endl;
return 0;
}
int print_luck(int i)
{
double inter = 3.0 * i * (i - 1.0) + 1.;
if (sqrt(inter) - (int)sqrt(inter) < 1e-15) //是某个数的平方
{
int c = (int)sqrt(inter);
if (c == i) //立方差必须是另一个正整数的平方
return 0;
int b = 0;
for (b = 1; b <= (int)sqrt(c); b++)
{
if (b * b + (b - 1) * (b - 1) == c)
{
cout << i << ' ' << b << endl;
return 1;
}
}
}
return 0;
}