论文笔记——Semantic Scene Completion from a Signal Depth Image

没有太多时间好好翻译了,大概把要点梳理了一下啦~


Task:

  1. produce a complete 3D voxel representation of volumetric occupancy
  2. semantic labels for a scene from a signal-view depth map observation

以前的类似工作呢一直是将1、2任务分开完成的,但作者设计了一个end-to-end 3D Conv net:SSCNet用于完善语义场景,发现效果更好。
input:a single depth image
output:occupancy and semantic labels

如何解决Semantic Scene Completion的思路:

  1. A dilation-based 3D context module
  2. Joint model

Problems and Solution:

  1. How do we effective capture contextual information from 3D volumetric data,where the signal is sparse and lacks high frequency detail?
    *Solution:*A dilation-based 3D context module用于扩大感受野,能够有效捕捉来自三维体积数据的信息,其中信号是稀疏且缺乏高频细节

  2. RGB-D datasets only provide annotationos on visible surfaces,how do we obtain training data with complete volumetric annatations at scene level?
    *Solution:*SUNCG datasts(we can compute 3D secen volumes with dense object labels through voxelization)
    (RGB-D仅仅提供了浅层表面的注释)

Attribute:

  1. 提出SSCNet,该网络的输入是单幅的深度图像,输出包括了体素和语义标签。
  2. 提出了一个新的数据集SUNCG,该数据集是dense注释的合成三维场景数据集。

相关的算法都是建立在相机模型的基础之上,分单目(即单视角)和双目(即多视角,multi-view),而本论文是single-view。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值