hd 1988 Flipping Burned Pancakes

做练习赛时,没来的及看.后来看的时候发现可以用bfs+递归求解,写好后TLE,后来又改成了dfs,一样TLE.后来又问了WY,直接构造就可以了,方法是先排大的,再排小的.
/*
方法:直接构造,先排大的,再排小的...
*/

#include 
< iostream >
#include 
< queue >
using   namespace  std;
int  a[ 32 ], n;
void  change( int  t)
{
    
int i;
    
for (i=1; i<=t; ++i)
    
{
        a[i] 
*= -1;
    }

    
for (i=1; i<=t/2++i)
    
{
        
int tt = a[i];
        a[i] 
= a[t-i+1];
        a[t
-i+1= tt;
    }

}

int  main()
{
    
int i, j, index = 1;
    
int N;
    
char c;
    queue
<int> mq;
    scanf(
"%d"&N);
    
while (N--)
    
{
        scanf(
"%d"&n);
        
for (i=1; i<=n; ++i)
        
{
            scanf(
" %c%d"&c, &a[i]);
            
if(c == '-')
                a[i] 
*= -1;
        }
    
        
for (i=n; i>=1--i)
        
{
            
if(a[i] != i)
            
{
                
while (1)
                
{
                    
for (j=1; j<=n; ++j)
                    
{
                        
if(abs(a[j]) == i)
                            
break;
                    }

                    
if(j==1 && a[j]==-i)
                    
{
                        change(i);
                        mq.push(i);
                        
break;
                    }

                    
else
                    
{
                        change(j);
                        mq.push(j);
                    }

                }

            }

        }

        printf(
"%d %d", index++, mq.size());
        
while (!mq.empty())
        
{
            printf(
" %d", mq.front());
            mq.pop();
        }

        printf(
" ");
    }

    
return 0;
}
 
以下是一个基于C语言的LDPC Modified Weighted Bit Flipping算法的代码示例: ```c #include<stdio.h> #include<stdlib.h> #include<math.h> #include<time.h> #define N 2048 //码长 #define K 1024 //信息位数 #define M 1024 //校验位数 #define p 0.01 //BSC信道误码率 #define MAX_ITER 50 //最大迭代次数 #define tau 2.0 //重要性参数 double H[M][N]; //LDPC矩阵 int d[N]; //接收端接收的码字 double r[N]; //接收端的对数似然比 double q[N]; //对数似然比的绝对值 double x[N]; //解码后的信息位 int perm[N]; //随机置换序列 double c[M]; //校验和 int iter_cnt = 0; //迭代次数计数器 //生成LDPC矩阵 void gen_LDPC_matrix() { int i,j,k; int col[N]; int row[M]; srand((unsigned)time(NULL)); for(i=0;i<M;i++) for(j=0;j<N;j++) H[i][j]=0; for(i=0;i<N;i++) perm[i]=i; for(i=0;i<M;i++) row[i]=i; for(i=0;i<N;i++) col[i]=i; for(i=0;i<N;i++) { k = rand()%(N-i) + i; j = perm[i]; perm[i] = perm[k]; perm[k] = j; } for(i=0;i<K;i++) { for(j=0;j<N/K;j++) { H[i][col[i*N/K+j]] = 1; } } for(i=K;i<M;i++) { for(j=0;j<N/K;j++) { H[i][col[(rand()%(N/K))+j*N/K]] = 1; } } } //BSC信道模拟 void BSC_channel() { int i; for(i=0;i<N;i++) { if((double)rand()/RAND_MAX < p) d[i] = 1-d[i]; r[i] = log((1-p)/p); if(d[i]==1) r[i] = -r[i]; q[i] = fabs(r[i]); } } //判断校验方程是否满足 int check_equations() { int i,j; int flag = 0; for(i=0;i<M;i++) { c[i] = 0; for(j=0;j<N;j++) { if(H[i][j]==1) c[i] += x[j]; } c[i] = fmod(c[i],2); if(c[i]!=0) flag = 1; } return flag; } //Modified Weighted Bit Flipping算法 void MWBF() { int i,j,k; double w[N]; double sum_w = 0; double f[N]; double delta[N]; double sum_delta = 0; double p0,p1; while(iter_cnt < MAX_ITER && check_equations()) { iter_cnt++; for(i=0;i<N;i++) { w[i] = 1/(1+exp(q[i])); if(x[i]==1) w[i] = 1-w[i]; sum_w += w[i]; } for(i=0;i<N;i++) { f[i] = 1; for(j=0;j<M;j++) { if(H[j][i]==1) f[i] *= (2*c[j]-1); } delta[i] = log((1-w[i])/w[i]) + f[i]/sum_w/tau; sum_delta += fabs(delta[i]); } while(sum_delta>1e-6) { k = 0; for(i=1;i<N;i++) { if(delta[i]>delta[k]) k = i; } x[k] = 1-x[k]; p0 = p/(1-p); p1 = (1-p)/p; for(i=0;i<M;i++) { if(H[i][k]==1) { if(c[i]==0) p1 *= (1-2*w[k]); else p0 *= (1-2*w[k]); } } r[k] = log(p0/p1); if(x[k]==1) r[k] = -r[k]; q[k] = fabs(r[k]); sum_delta = 0; for(i=0;i<N;i++) { f[i] = 1; for(j=0;j<M;j++) { if(H[j][i]==1) f[i] *= (2*c[j]-1); } delta[i] = log((1-w[i])/w[i]) + f[i]/sum_w/tau; sum_delta += fabs(delta[i]); } } sum_w = 0; sum_delta = 0; } } int main() { int i; double BER; gen_LDPC_matrix(); for(i=0;i<N;i++) d[i] = rand()%2; BSC_channel(); MWBF(); BER = 0; for(i=0;i<K;i++) BER += x[i] ^ d[i]; BER /= K; printf("BER = %f\n",BER); return 0; } ``` 该代码实现了一个N=2048,K=1024的LDPC码的解码,使用的是BSC信道。算法采用了Modified Weighted Bit Flipping算法,重要性参数tau默认为2。代码中使用了对数似然比,避免了浮点数下溢问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值