一、题目
设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
push(x) —— 将元素 x 推入栈中。
pop() —— 删除栈顶的元素。
top() —— 获取栈顶元素。
getMin() —— 检索栈中的最小元素。
示例:
输入:
[“MinStack”,“push”,“push”,“push”,“getMin”,“pop”,“top”,“getMin”]
[[],[-2],[0],[-3],[],[],[],[]]
输出:
[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
提示:
pop、top 和 getMin 操作总是在 非空栈上调用。
二、解题思路
这道题其实很简单,用列表内置的方法就可以。但有几个点需要注意:
- 题目要求在常数时间内检索最小元素。找最小值通常使用的方法是遍历整个列表逐个比大小,但这样时间复杂度就是O(n),而不是要求的常数。根据这点可以想到的最简单的办法是创建一个辅助栈直接在栈顶存放最小值,过程是在每个元素入栈时把当前栈的最小值存入辅助栈。
- 提示中说到部分操作需要在非空栈上调用,所以在写代码时要把判别栈是否非空考虑进去。针对这点,我目前一共看到三个不同版本的写法。
(1) 在创建辅助栈的时候写入math.inf或者float(inf)----表示正无穷大,实际上我并看不懂这种写法,在网上找了一通也没有理解为什么这样写,我个人理解是放入一个没有具体值的数字就可以保证栈一定是非空的,不知道这样理解是否正确。这种写法其实在后面创建函数的时候最简单,推荐使用。
(2) 在定义的push函数处做手脚,判断栈是否为空,只有在空或者输入元素小于栈顶(辅助栈)的情况下才可以push入数字,否则就会出现索引溢出的问题。用到的写法有两种:a)if not self.min_stack or x <= self.min_stack[-1]: self.min_stack.append(x)
(这种写法我并不能够很好的理解,为什么这表示栈为空)b)if len(self.min_stack)==0: self.min_stack.append(x)
elif x<=self.min_stack[-1]: self.min_stack.append(x)
(这种也是我所能想到的方法,下面的完整代码用到的就是这种写法)
(3) 在pop函数处需要考虑辅助栈顶的特殊情况,因为辅助栈顶保留的只是新入栈元素小于之前元素的列表,如果要弹出的数是辅助栈的栈顶就直接弹出,否则的话说明要弹出的数在过程中不是最小的,就不在辅助栈内。写法:if self.stack.pop()==self.min_stack[-1]: self.min_stack.pop()
三、代码
- 对应于2.2.b
class MinStack:
def __init__(self):
"""
initialize your data structure here.
"""
self.stack = []
self.min_stack=[]
def push(self, x: int) -> None:
self.stack.append(x)
if len(self.min_stack)==0:
self.min_stack.append(x)
elif x<=self.min_stack[-1]:
self.min_stack.append(x)
def pop(self) -> None:
if self.stack.pop()==self.min_stack[-1]:
self.min_stack.pop()
def top(self) -> int:
return self.stack[-1]
def getMin(self) -> int:
return self.min_stack[-1]
# Your MinStack object will be instantiated and called as such:
# obj = MinStack()
# obj.push(x)
# obj.pop()
# param_3 = obj.top()
# param_4 = obj.getMin()
- 对应于2.1
class MinStack:
def __init__(self):
self.stack = []
self.min_stack = [math.inf]
def push(self, x: int) -> None:
self.stack.append(x)
self.min_stack.append(min(x, self.min_stack[-1]))
def pop(self) -> None:
self.stack.pop()
self.min_stack.pop()
def top(self) -> int:
return self.stack[-1]
def getMin(self) -> int:
return self.min_stack[-1]
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/min-stack/solution/zui-xiao-zhan-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
- 对应于2.2.a
class MinStack:
def __init__(self):
self.stack = []
self.min_stack = []
def push(self, x: int) -> None:
self.stack.append(x)
if not self.min_stack or x <= self.min_stack[-1]:
self.min_stack.append(x)
def pop(self) -> None:
if self.stack.pop() == self.min_stack[-1]:
self.min_stack.pop()
def top(self) -> int:
return self.stack[-1]
def getMin(self) -> int:
return self.min_stack[-1]
作者:jyd
链接:https://leetcode-cn.com/problems/min-stack/solution/min-stack-fu-zhu-stackfa-by-jin407891080/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。