λ-matrix

Definition:

We call P ( λ ) ∈ M n ( F [ λ ] ) P(\lambda)\in M_n(F[\lambda]) P(λ)Mn(F[λ]) a λ \lambda λ-martix.

Attention! P ∈ M n [ F ] P\in M_n[F] PMn[F]!

rank ( A ( λ ) ) : = max ⁡ { the order of a non-zero minor of  A ( λ ) } \text{rank}(A(\lambda)):=\max\{\text{the order of a non-zero minor of }A(\lambda)\} rank(A(λ)):=max{the order of a non-zero minor of A(λ)}.

A ( λ )  is invertible : = ∃ B ( λ ) ,   s . t .   A ( λ ) B ( λ ) = B ( λ ) A ( λ ) = I A(\lambda)\text{ is invertible}:=\exist B(\lambda),\ s.t.\ A(\lambda)B(\lambda)=B(\lambda)A(\lambda)=I A(λ) is invertible:=B(λ), s.t. A(λ)B(λ)=B(λ)A(λ)=I.

A ( λ ) , B ( λ )  are equivalent : = ∃ U ( λ ) , V ( λ )   s . t .   U ( λ ) A ( λ ) V ( λ ) = B ( λ ) A(\lambda),B(\lambda)\text{ are equivalent}:=\exist U(\lambda),V(\lambda)\ s.t.\ U(\lambda)A(\lambda)V(\lambda)=B(\lambda) A(λ),B(λ) are equivalent:=U(λ),V(λ) s.t. U(λ)A(λ)V(λ)=B(λ), where U ( λ ) , V ( λ ) U(\lambda),V(\lambda) U(λ),V(λ) are invertible.


Properties:

A ( λ ) A(\lambda) A(λ) is invertible. ⇔ ∣ A ( λ ) ∣ ∈ U ( F ) . ⇔ A ( λ ) = ∏ P ( λ ) \Leftrightarrow|A(\lambda)|\in U(F).\Leftrightarrow A(\lambda)=\prod P(\lambda) A(λ)U(F).A(λ)=P(λ), where P ( λ ) P(\lambda) P(λ) are elementary λ \lambda λ-matrices.

As in here, the second condition is ∣ A ( λ ) ∣ = c ≠ 0 |A(\lambda)|=c\neq0 A(λ)=c=0.

Attention! That the result is not zero is not equivalent with the condition above! It can be other polynomials with positive degree.

Elementary Transformation

Similarly you can find out matrices betokening elementary transformations.

A row/column should be multiplied by a unit, not a zero divisor, because that allows no way back.

λ I − A \lambda I-A λIA is called the characteristic matrix of A A A.

Obviously, D n D_n Dn of λ I − A \lambda I-A λIA is the characteristic polynomial of A A A.

Equivalence

A ∼ B . ⇔ λ I − A ≃ λ I − B . A\sim B.\Leftrightarrow\lambda I-A\simeq\lambda I-B. AB.λIAλIB.

This enables you to perform elementary transformations to your heart’s content.

Proof:

1, If there exists number matrices P , Q ,   s . t .   P ( λ I − A ) Q = λ I − B P,Q,\ s.t.\ P(\lambda I-A)Q=\lambda I-B P,Q, s.t. P(λIA)Q=λIB.

λ P Q − P A Q = λ I − B \lambda PQ-PAQ=\lambda I-B λPQPAQ=λIB.

(Such matrices can be regarded as polynomials whose coefficients are number matrices.)

Considering its leading coefficient, P Q = I PQ=I PQ=I.

2, It’s not a commutative ring.

U = P ( λ I − A ) + U 0 , V = ( λ I − A ) Q + V 0 U=P(\lambda I-A)+U_0,V=(\lambda I-A)Q+V_0 U=P(λIA)+U0,V=(λIA)Q+V0.

3,
U ( λ ) ( λ I − A ) = ( λ I − B ) V − 1 ( λ ) . U ( λ ) = ( λ I − B ) Q ( λ ) + U 0 . ⇒ ( λ I − B ) Q ( λ ) ( λ I − A ) + U 0 ( λ I − A ) = ( λ I − B ) V − 1 ( λ ) . ⇒ ( λ I − B ) [ − Q ( λ ) ( λ I − A ) + V − 1 ( λ ) ] = U 0 ( λ I − A ) . Consider degrees in both side.  ⇒ V − 1 ( λ ) − Q ( λ ) ( λ I − A ) ∈ M n ( F ) , set down as  P . ⇒ U 0 ( λ I − A ) = ( λ I − B ) P . ⇒ P = U 0 . \begin{aligned} & U(\lambda)(\lambda I-A)=(\lambda I-B) V^{-1}(\lambda) . \\ & U(\lambda)=(\lambda I-B) Q(\lambda)+U_{0} . \\ \Rightarrow &(\lambda I-B) Q(\lambda)(\lambda I-A)+U_{0}(\lambda I-A)=(\lambda I-B) V^{-1}(\lambda) . \\ \Rightarrow &(\lambda I-B)\left[-Q(\lambda)(\lambda I-A)+V^{-1}(\lambda)\right]=U_{0}(\lambda I-A) . \\ \text {Consider degrees in both side. } \\ \Rightarrow & V^{-1}(\lambda)-Q(\lambda)(\lambda I-A) \in M_{n}(F) \text {, set down as } P . \\ \Rightarrow & U_{0}(\lambda I-A)=(\lambda I-B) P.\Rightarrow P=U_{0}. \end{aligned} Consider degrees in both side. U(λ)(λIA)=(λIB)V1(λ).U(λ)=(λIB)Q(λ)+U0.(λIB)Q(λ)(λIA)+U0(λIA)=(λIB)V1(λ).(λIB)[Q(λ)(λIA)+V1(λ)]=U0(λIA).V1(λ)Q(λ)(λIA)Mn(F), set down as P.U0(λIA)=(λIB)P.P=U0.
Now we prove P − 1 ∃ P^{-1} \exists P1.
P V ( λ ) = I − Q ( λ ) [ ( λ I − A ) V ( λ ) ] = I − Q ( λ ) U − 1 ( λ ) ( λ I − B ) .  Let  V ( λ ) = R ( λ ) ( λ I − B ) + V 0 . ⇒ P V ( λ ) = P R ( λ ) ( λ I − B ) + P V 0 . ⇒ ( P R ( λ ) + Q ( λ ) U − 1 ( λ ) ) ( λ I − B ) = I − P V 0 . \begin{aligned} & P V(\lambda)=I-Q(\lambda)[(\lambda I-A) V(\lambda)]=I-Q(\lambda) U^{-1}(\lambda)(\lambda I-B) . \\ \text { Let } V(\lambda)=R(\lambda)(\lambda I-B)+V_{0} . \\ \Rightarrow & P V(\lambda)=P R(\lambda)(\lambda I-B)+P V_{0}.\\ \Rightarrow &\left(P R(\lambda)+Q(\lambda) U^{-1}(\lambda)\right)(\lambda I-B)=I-P V_{0} . \end{aligned}  Let V(λ)=R(λ)(λIB)+V0.PV(λ)=IQ(λ)[(λIA)V(λ)]=IQ(λ)U1(λ)(λIB).PV(λ)=PR(λ)(λIB)+PV0.(PR(λ)+Q(λ)U1(λ))(λIB)=IPV0.
Consider degrees in both side.
⇒ P R ( λ ) + Q ( λ ) U − 1 ( λ ) = 0. ⇒ P V 0 = I . ⇒ P − 1 = V 0 . \Rightarrow P R(\lambda)+Q(\lambda) U^{-1}(\lambda)=0 . \Rightarrow P V_{0}=I. \Rightarrow P^{-1}=V_{0}. PR(λ)+Q(λ)U1(λ)=0.PV0=I.P1=V0.


∀ A ( λ ) ∼ B ( λ ) = ( b i , j ( λ ) ) , deg ⁡ b 1 , 1 ( λ ) = min ⁡ { deg ⁡ b i , j }   &   b 1 , 1 ∣ b i , j \forall A(\lambda)\sim B(\lambda)=(b_{i,j}(\lambda)),\deg b_{1,1}(\lambda) =\min\{\deg b_{i,j}\}\ \&\ b_{1,1}|b_{i,j} A(λ)B(λ)=(bi,j(λ)),degb1,1(λ)=min{degbi,j} & b1,1bi,j.

Perform division with remainder with element 1,1.

If can not be divided, change the remainder to 1,1.

Finally you get a 1,1 element which can divide all other elements.

Break Bricks in row 1 and column 1.

Repeat such process in lower right corner.

Smith Canonical Form and Invariant Factor

Any λ − \lambda- λmatrix is equivalent to such Smith canonical form:
( d 1 ( x ) d 2 ( x ) ⋱ ) \left( \begin{matrix} d_1(x)\\ &d_2(x)\\ &&\ddots \end{matrix} \right) d1(x)d2(x)
d i d_i di is called an invariant factor of A ( λ ) A(\lambda) A(λ).

d i d_i di has leading coefficient 1 and d i ∣ d i + 1 d_i|d_{i+1} didi+1.

Then we prove d i d_i di is independent with transformations you use.

Determinant Factor

Definition:

Determinant factor D k : = ( { all  k -order minors of  A ( λ ) } ) D_k:=(\{\text{all }k\text{-order minors of }A(\lambda)\}) Dk:=({all k-order minors of A(λ)}).

We know these are independent with elementary transformations, because those transformations don’t change common divisor.

Then we know the canonical form is unique.

D k = ∏ i = 1 k d i D_k=\prod\limits_{i=1}^kd_i Dk=i=1kdi.

So D i   o r   d i D_i\ or\ d_i Di or di are complete invariants of equivalent λ − \lambda- λmatrices.

For invertible matrix, D n = 1. ⇒ D i = 1. ⇒ d i = 1 D_n=1.\Rightarrow D_i=1.\Rightarrow d_i=1 Dn=1.Di=1.di=1, then I I I is the canonical form of invertible matrices.

Define λ I − A \lambda I-A λIA’s invariant factors and elementary factors A A A’s invariant factors and elementary factors.

When determining determinant factors, you start with biggest one, because it can determine former ones, if you are lucky.

Elementary Factor

All irreducible divisors which appear in the decomposition of d i d_i di, are called elementary factors of A ( λ ) A(\lambda) A(λ). If it repeats, set down all.

Align them in ascending order of q q q: (Less than n n n? Fill with 1 1 1.)
( x + p 1 ) q 1 , 1 ( x + p 1 ) q 1 , 2 ⋯ ( x + p 2 ) q 2 , 1 ( x + p 2 ) q 2 , 2 ⋯ \begin{matrix} (x+p_1)^{q_{1,1}}&(x+p_1)^{q_{1,2}}&\cdots\\ (x+p_2)^{q_{2,1}}&(x+p_2)^{q_{2,2}}&\cdots\\ \end{matrix} (x+p1)q1,1(x+p2)q2,1(x+p1)q1,2(x+p2)q2,2
Attention: This is just an example in C \mathbb C C! Irreducible divisors can be very different in Q Q Q or other sets.

You can figure that the i t h i^{th} ith column multiplied together makes d i d_i di.

Elementary factors are easier to figure out:

Turn A ( λ ) A(\lambda) A(λ) to a diagonal matrix by elementary transformations; then uniquely decompose all diagonal elements, elementary factors got.

Proof:

Just need to prove:

If ( f i , g j ) = 1 , ∀ i , j ∈ { 0 , 1 } (f_i,g_j)=1,\forall i,j\in\{0,1\} (fi,gj)=1,i,j{0,1}, then:
( f 1 g 1 0 0 f 2 g 2 ) ∼ ( f 2 g 1 0 0 f 1 g 2 ) . \left( \begin{matrix} f_1g_1&0\\ 0&f_2g_2\\ \end{matrix} \right) \sim \left( \begin{matrix} f_2g_1&0\\ 0&f_1g_2\\ \end{matrix} \right). (f1g100f2g2)(f2g100f1g2).

Obviously, they have same determinant factors.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值