Peano says, there exists a mapping
[
0
,
1
]
→
[
0
,
1
]
×
[
0
,
1
]
,
t
↦
(
a
,
b
)
[0,1]\to[0,1]\times[0,1],t\mapsto(a,b)
[0,1]→[0,1]×[0,1],t↦(a,b), which is a surjection. Firguratively, a curve can fill a square.
Proof:
By Schoenberg.
∀ t ∈ [ 0 , 1 ] \forall t\in[0,1] ∀t∈[0,1], we define 1 = 0. 9 ˙ 1=0.\dot9 1=0.9˙. Thus we have a unique decimal expression.
Consider a , b a,b a,b on base 2 2 2.
a = 0. a 1 a 2 ⋯ . ⟺ a = ∑ i = 1 + ∞ a i 2 − i . a=0.a_1a_2\cdots.\iff a=\sum_{i=1}^{+\infty}a_i 2^{-i}. a=0.a1a2⋯.⟺a=∑i=1+∞ai2−i.
Consider c c c on base 3 3 3.
c 2 n − 1 : = a n , c 2 n : = b n c_{2n-1}:=a_n,c_{2n}:=b_n c2n−1:=an,c2n:=bn.
c : = 2 × 0. a 1 b 1 a 2 b 2 ⋯ = 0. ( 2 c 1 ) ( 2 c 2 ) ⋯ . ⟺ c : = 2 ∑ i = 1 + ∞ 3 − i c i . c:=2\times0.a_1b_1a_2b_2\cdots=0.(2c_1)(2c_2)\cdots.\iff c:=2\sum_{i=1}^{+\infty}3^{-i}c_i. c:=2×0.a1b1a2b2⋯=0.(2c1)(2c2)⋯.⟺c:=2∑i=1+∞3−ici.
Obviously, c ∈ [ 0 , 1 ] c\in[0,1] c∈[0,1].
We define a sift function ω \omega ω like this, and let cycle period = 2 =2 =2.
Then we can prove
ω
(
3
k
c
)
=
c
k
+
1
\omega(3^kc)=c_{k+1}
ω(3kc)=ck+1.
Then we sum omega, we get functions s . t . ψ ( c ) = a , φ ( c ) = b s.t.\ \psi(c)=a,\varphi(c)=b s.t. ψ(c)=a,φ(c)=b.