GNN学习笔记(四):图注意力神经网络(GAT)节点分类任务实现

目录

0 引言

1、Cora数据集

2、citeseer数据集

3、Pubmed数据集

4、DBLP数据集

5、Tox21 数据集

6、代码


嘚嘚嘚,唠叨小主,闪亮登场,哈哈,过时了过时了,闪亮登场换成大驾光临,哈哈,这样才颇有气势,哼哼...

(唠叨小主哼哼了两声,对新改的词表示满意,微拉裙侧,留下了高跟鞋的声音...)

0 引言

近年来,人们对深度学习方法在图上的扩展越来越感兴趣。在多方因素的成功推动下,研究人员借鉴了卷积网络、循环网络和深度自动编码器的思想,定义和设计了用于处理图数据的神经网络结构,由此一个新的研究热点——“图神经网络(Graph Neural Networks,GNN)”应运而生。

图神经网络的研究与图嵌入或网络嵌入密切相关,图嵌入或网络嵌入是数据挖掘和机器学习界日益关注的另一个课题。许多图嵌入算法通常是无监督的算法,它们可以大致可以划分为三个类别,即矩阵分解、随机游走和深度学习方法。同时图嵌入的深度学习方法也属于图神经网络,包括基于图自动编码器的算法(如DNGR和SDNE)和无监督训练的图卷积神经网络(如GraphSage)。我们将图神经网络划分为五大类别,分别是:图卷积网络(Graph Convolution Networks,GCN)、 图注意力网络(Graph Attention Networks)、图自编码器( Graph Autoencoders)、图生成网络( Graph Generative Networks) 和图时空网络(Graph Spatial-temporal Networks)。


今天的任务——参照GNN学习笔记中的代码使用PyG中的图卷积模块PyG的数据集上实现节点分类或回归任务,之前用到的是MLP、图卷积神经网络、图注意力神经网络,数据集是Cora数据集。

1、Cora数据集

Cora数据集由机器学习论文组成,是近年来图深度学习很喜欢使用的数据集。在数据集中,论文分为以下七类之一:基于案例、遗传算法、神经网络、概率方法、强化学习、规则

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值