基于AR滤波和最小熵反卷积的振动信号诊断轴承故障方法与谱分析增强

本文介绍了使用Matlab程序,通过AR滤波器去除噪声,最小熵反卷积恢复信号,结合谱分析来提升滚动轴承故障检测和诊断的准确性。振动信号处理是关键,有助于早期发现并防止设备故障。
摘要由CSDN通过智能技术生成

Matlab程序,AR+MED,应用自回归AR滤波器滤波后,信号使用最小熵反卷积,结合谱分析来增强滚动轴承的故障检测和诊断。
主要通过振动信号诊断轴承故障。

ID:4880653920536262

编程小哥


Matlab程序在滚动轴承故障检测和诊断中具有广泛的应用。本文将介绍一种基于自回归AR滤波器和最小熵反卷积的方法,结合谱分析,用于增强滚动轴承的故障检测和诊断能力。

滚动轴承是旋转机械设备中常见的关键部件之一,其正常运行对于设备的性能和寿命至关重要。然而,长期运行和负载变化可能导致轴承出现故障,进而影响设备的可靠性和安全性。

振动信号是一种常用的用于轴承故障检测和诊断的信号,其包含了轴承内部的运动状态信息。然而,由于噪声和其他干扰的存在,有效提取故障特征变得困难。因此,利用信号处理技术对振动信号进行预处理和特征提取是关键的研究方向之一。

本文提出的方法首先利用自回归AR滤波器对振动信号进行滤波处理。AR滤波器是一种时域滤波器,其基本原理是通过线性组合过去的若干个观测值来估计当前的观测值。通过对振动信号进行AR滤波,可以抑制噪声和干扰,提取出轴承的故障特征信号。

接下来,我们采用最小熵反卷积方法对滤波后的信号进行反卷积处理。最小熵反卷积是一种非线性滤波方法,其基本思想是通过最小化信号的熵来恢复

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值