对于一个周期函数
f
(
x
)
f(x)
f(x): 若满足狄利克雷条件,即在一个周期中,只有有限个第一类间断点以及有限个极值点,则这个函数可以展开成傅里叶级数,若这个傅里叶级数处处收敛于
f
(
x
)
f(x)
f(x),则称这个级数是这个函数的傅里叶展开式,即:
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
x
+
b
n
sin
n
x
)
,
x
∈
[
−
π
,
π
]
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infin}(a_{n}\cos{nx}+b_{n}\sin{nx}),\quad x\in[-\pi,\pi]
f(x)=2a0+n=1∑∞(ancosnx+bnsinnx),x∈[−π,π]
其中:
{
a
0
=
1
π
∫
−
π
π
f
(
x
)
d
x
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
n
x
d
x
b
n
=
1
π
∫
−
π
π
f
(
x
)
sin
n
x
d
x
\begin{cases} & a_{0}=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)dx \\\\ & a_{n}=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\cos{nx}dx \\\\ & b_{n}=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\sin{nx}dx \end{cases}
⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧a0=π1∫−ππf(x)dxan=π1∫−ππf(x)cosnxdxbn=π1∫−ππf(x)sinnxdx
傅里叶级数展开及系数项求解
最新推荐文章于 2024-09-19 11:14:21 发布