正文
傅里叶级数表述为:
f ( t ) = a 0 + ∑ k = 1 ∞ { a k cos ( 2 π k T 0 t ) + b k sin ( 2 π k T 0 t ) } f(t) = a_0 + \sum^\infin_{k=1} \left \{ a_k \cos \left( \frac {2\pi k}{T_0}t \right) + b_k \sin \left( \frac{2\pi k}{T_0}t \right)\right \} f(t)=a0+k=1∑∞{
akcos(T02πkt)+bksin(T02πkt)}
上式中, T 0 T_0 T0 是傅里叶展开前原周期函数的一个周期。可以看到三角函数的角频率 ω \omega ω 为 ω = 2 π k T 0 \omega = \frac {2 \pi k}{T_0} ω=T02πk
※三角函数的中 t t t 前面的系数是角频率 ω \omega ω 它与周期的关系是 ω = 2 π T \omega = \frac {2\pi}{T} ω=T2π ,所以可以发现,在原函数的一个周期 T 0 T_0 T0 中, 当 k k k 变化,角频率 ω \omega ω 随之变化,于是周期 T T T , 变成了 T 0 2 \frac{T_0}{2} 2T0 、 T 0 3 \frac{T_0}{3} 3T0 、 T 0 4 \frac{T_0}{4} 4T0 … T 0 ∞ \frac{T_0}{\infin} ∞T0 。
于是,上式就成了无穷个同相位、各种振幅的三角函数之和了。
( ※注意:振幅为 a k a_k ak 或 b k b_k bk )
周期 T T T 随 k k k 增大不断减小,即,频率 f f f 和角频率 ω \omega ω 不断增大, 最大的周期称为基本周期 T 0 T_0 T0 ,最小的(角)频率称为基本(角)频率 f 0 f_0 f0 ( ω 0 \omega_0 ω0 ),傅里叶级数的每一份三角函数的频率都是基本频率的整数倍。
接下来,级数展开需要求的三角函数的系数,即,傅里叶系数
求常数项 a 0 a_0 a0 (直流成分)
∫ − T 0 / 2 T 0 / 2 f ( t ) d t = ∫ − T 0 / 2 T 0 / 2 { a 0 + ∑ k = 1 ∞ { a k cos ( 2 π k T 0 t ) + b k sin ( 2 π k T 0 t ) } d t } \int_{-T_0/2}^{T_0/2} f(t)dt = \int_{-T_0/2}^{T_0/2} \left \{ a_0 + \sum^\infin_{k=1} \left \{ a_k \cos \left( \frac {2\pi k}{T_0}t \right) + b_k \sin \left( \frac{2\pi k}{T_0}t \right)\right \}dt \right \} ∫−T0/2T0/2f(t)dt=∫−T0/2T0/2{
a0+k=1∑∞{
akcos(T02πkt)+bksin(T02πkt)}dt}
由于积分和累加本质上就是求和(积分是连续和,累加是离散和)所以把积分号放进括号里,有:
∫ − T 0 / 2 T 0 / 2 f ( t ) d t = ∫ − T 0 / 2 T 0 / 2 a 0 d t + ∑ k = 1 ∞ { ∫ − T 0 / 2 T 0 / 2 a k cos ( 2 π k T 0 t ) d t + ∫ − T 0 / 2 T 0 / 2 b k sin ( 2 π k T 0 t ) d t } \int_{-T_0/2}^{T_0/2} f(t)dt = \int_{-T_0/2}^{T_0/2} a_0dt + \sum^\infin_{k=1} \left \{ \int_{-T_0/2}^{T_0/2} a_k \cos \left( \frac {2\pi k}{T_0}t \right)dt + \int_{-T_0/2}^{T_0/2} b_k \sin \left( \frac{2\pi k}{T_0}t \right)dt \right \} ∫−T