一,安装Tensorflow
Tensorflow有两种版本,根据显卡(如果你是使用Nvida的显卡的话)可以安装GPU版本,以及CPU版本。我们将安装CPU版本(本机 是AMD显卡)
安装GPU版本的话可以参考这篇博客
1. GPU版本
2. CPU版本
2.1 Anaconda
Anaconda是由Python提供支持的领先的开放数据科学平台。 Anaconda的开源版本是Python和R的高性能分发版本,包括超过100个用于数据科学的最流行的Python,R和Scala软件包。
Download Anaconda
2.1.1 安装Anaconda
打开安装程序,不断点击下一步,中间会出现以下画面选项,让你选择是否要把Anaconda添加到环境变量中。下面会提示说这是一个不支持的选项,原因是如果本机已经安装了Python版本(一般情况下)并且添加到环境变量中,会导致Anaconda自带的Python路径被遮盖,可能会导致因python版本,以及本机安装的Python中缺少相应的包导致一系列的问题。但我们可以把本机的python的路径从环境变量中删除,使用Anaconda自带的python,这样我们可以选择添加进环境变量,这样我们就可以在命令行中使用conda命令。或者你可以选择使用Anaconda Prompt命令行工具,可以不勾选这个选项。我是两个都勾选了
安装完成之后,在命令行中输入conda --version
,输出相应的Anaconda版本说明安装成功:
之后,检查一下当前的安装环境conda info --envs
,此时只有一个base项:
接下来,准备安装Python,可以输入conda search --full-name python
命令,查看有哪些python版本可以安装:
选择在下载Anaconda安装包时相应版本的python,这里我们选择的是Python 3.7。输入一下命令conda create --name tensorflow python=3.7
,安装Python。
安装完成之后,使用activate tensorflow
启动tensorflow。
这时,输入conda info -envs
时,将出现两项:
2.1.2 安装Tensorflow
此时我们开始安装tensorflow,输入pip install tensorflow
。这里,如果你之前已经安装了Python,那么此时,将会把tensorflow安装在已经安装的Python中。要注意把已有的Python路径从环境变量中删除,或者可以干脆把原来的Python直接删除掉,直接使用Anaconda的Python。
安装完成之后,在命令行中键入Python,进入Python交互界面,输入import tensorflow as tf
,此时,安装成功,则不会出现任何报错,成功导入tensorflow包:
如果提示没有tensorflow这个module的话,很可能是出现前面所说的问题,及tensorflow安装到了已有的python上了
二,简单的Tensorflow例子
使用Python交互界面完成一个简单的例子:
import操作加载tensorflow,然后使用as重命名为tf,方便我们引用。
然后定义了两个常量 (tf.constant) a和b,一个为(1.0,2.0),一个为(2.0,3.0)。然后我们使用
+
+
+进行向量相加,得到的结果为result
输出result的结果:
你会发现,我们没有直接输出result的值,我们需要先生成一个会话,并通过这个会话(session),并通过这个会话来计算结果,这样就实现了一个非常简单的Tensorflow模型。
之后我们会再介绍一下Tensorflow的两个主要依赖包Bazel和Protocol Buffer,然后再深入介绍Tensorflow的基本概念,把计算模型和神经网络模型结合起来。