MIT 线性代数 Linear Algebra 5: Permutation matrix and column space of matrix

好, 本节我们接着上一节的话题 L U LU LU 分解。上一节中,我们的结论是,一类不需要row exchange的满秩矩阵是可以进行 L U LU LU 分解分解的,这一节,我们将研究另一类需要行变换的矩阵

permutation matrix

在进入正题之前,我们先讨论一类特殊的矩阵permutation matrix。这一类矩阵是由单位仅经过row exchange得到的矩阵,比如size是3的单位阵 I 3 I_3 I3 经过行变换后会得到以下6个矩阵:
[ 1 0 0 0 1 0 0 0 1 ] [ 1 0 0 0 0 1 0 1 0 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix} 100010001100001010

[ 0 1 0 1 0 0 0 0 1 ] [ 0 0 1 1 0 0 0 1 0 ] \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix} 010100001010001100

[ 0 0 1 0 1 0 1 0 0 ] [ 0 1 0 0 0 1 1 0 0 ] \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end{bmatrix} 001010100001100010

总的来说,对于size为 n n n的单位阵 I n I_n In, 我们可以通过行变换得到 n   ! n\,! n! 种permutation matrix. 注意,对于任一个permutation matrix P P P

  1. P P P左乘矩阵 A A A 的作用是把矩阵 A A A 的行重新排列;
  2. P P P右乘矩阵 A A A 的作用是把矩阵 A A A 的列重新排列;
  3. P ⊤ = P − 1 P^\top=P^{-1} P=P1, i.e., P ⊤ P = I P^\top P=I PP=I.

以上三个结论应该都很好理解。

P L U PLU PLU分解

好,现在我们可以研究需要row exchange的矩阵的分解了。其实答案已经呼之欲出了:任意一个满秩矩阵都能写成以下形式
A = P L U A=PLU A=PLU

这其实很简单,因为在上节课的基础上,我们首先对 A A A进行row exchange从而保证在分解过程中没有一个pivot是0,那么
P A = L U PA=LU PA=LU

成立。由于permutation matrix P P P的逆仍然是一个permutation matrix,我们便可以把 A A A 写为 A = P L U A=PLU A=PLU 的形式了。

symmetric matrix

这里Prof. Strang 讲了一下symmetric matrix和转置。实际上这些基础很容易理解对吧,大概归纳一下就是

  1. 矩阵转置就是 A i j ⊤ = A j i A_{ij}^\top=A_{ji} Aij=Aji,
  2. 矩阵对称就是 A ⊤ = A A^\top=A A=A,
  3. A ⊤ A A^\top A AA 永远是对称的 (不信做个转置看看)。

Vector space

好,从现在开始我们进入第三章vector space,这也是linear algebra核心内容了。

首先,我们先看什么是vector space。我们就不写正式的定义了,直观上理解,一个简单的vector space就是所有 n n n维实向量组成的space – R n \mathbb{R}^n Rn,注意

  1. vector space 对线性组合 (加,数乘) 封闭;
  2. vector space 一定包含零向量。

但是我们对 R n \mathbb{R}^n Rn 没那么大兴趣,因为他太简单了就是所有向量的集合。我们更关心的是 R n \mathbb{R}^n Rn中的subspace

考虑 R 3 \mathbb{R}^3 R3,它其中的subspace有以下几种可能:

  1. R 3 \mathbb{R}^3 R3 itself。
  2. 任一个经过原点的平面.
  3. 任一条经过原点的直线。
  4. 原点自己。

好,最后我们来看一下矩阵的列张成的子空间, i.e., the column space.

随便写一个矩阵
[ 3 1 6 2 1 4 1 1 2 ] \begin{bmatrix} 3 & 1 & 6\\ 2 & 1 & 4 \\ 1 & 1 & 2 \\ \end{bmatrix} 321111642

好,这个矩阵有三行三列,如果我们单独看每一列,他们每一列都是一个 R 3 \mathbb{R}^3 R3 的向量。我们想看一下,由矩阵的列进行linear combination张成的子空间长什么样子尼?

  1. 如果这个矩阵每一列都线性无关,那他能张成整个 R 3 \mathbb{R}^3 R3
  2. 如果有两列是线性相关的,那他能张成一个 R 3 \mathbb{R}^3 R3 中的平面;
  3. 如果有三列均线性相关,那他只能张成一个 R 3 \mathbb{R}^3 R3 中的直线;
  4. 如果矩阵全0,那他就只能是圆点。

理解以上几句话非常重要,这将帮助你理解后面的内容。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值