MIT 线性代数 Linear Algebra 20: 行列式的应用和物理意义

这一节,Prof. Strang主要讲了行列式的两个应用:求矩阵的逆,克拉默法则解 A x = b \bm{Ax=b} Ax=b。最后又讲了矩阵行列式的物理意义。

在开始本节的内容之前,我得强调一下,用行列式来计算是一件非常复杂的事情,因此通常我们不用行列式来求某个具体矩阵的逆或者解方程。最常用的还是matrix elimination:Gauss-Jordan 消元求逆,Gauss消元解方程。但是这不能说行列式解法不重要,因为他提供了一种analytical formula for “matrix inverse” or “solution to linear equations”. 换句话说,在橘真没有具体形式的时候,我们通常用的解方程或求逆算法都无法使用,这时候就可以把他们的逆或方程的解用行列式的方式表示出来。

用行列式求矩阵的逆

先把结论摆出来
A − 1 = 1 det A C ⊤      ( 1 ) \bm{A}^{-1}=\frac{1}{\text{det}\bm{A}} \bm{C}^\top~~~~(1) A1=detA1C    (1)

其中 C n × n \bm{C}_{n\times n} Cn×n 是的每个元素是 A \bm{A} A 对应位置元素的代数余子式 (cofactor).

当然,逆存在的前提是 det ( A ) \text{det}(\bm{A}) det(A) 不为零,也就是说矩阵non-singular。

我们首先给一些例子,再看一下为什么这个等式成立。


例1: 假设 A = I 4 \bm{A=I_4} A=I4 是单位阵, 那么
A − 1 = I 4 = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] \bm{A}^{-1}=\bm{I_4}=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} A1=I4=1000010000100001

det ( A ) = 1 \text{det}(\bm{A})=1 det(A)=1

C = I 4 = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] \bm{C}=\bm{I_4}=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} C=I4=1000010000100001

Eq. (1) 式成立。

例2: 假设 A \bm{A} A 是二阶矩阵
A = [ a b c d ] \bm{A}=\begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} A=[acbd]

可以验证其求逆公式确实符合 (1) 式
A − 1 = 1 a d − b c [ d − b − c a ] \bm{A}^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \\ \end{bmatrix} A1=adbc1[dcba]


Reasoning: 现在我们来验证一下为什么 (1) 式成立。验证 (1) 是不是 A − 1 \bm{A}^{-1} A1 的最好方法就是乘以 A \bm{A} A 看能不能得到单位阵。
A A − 1 = 1 det A A C ⊤      ( 2 ) \bm{AA}^{-1}=\frac{1}{\text{det}\bm{A}} \bm{A}\bm{C}^\top~~~~(2) AA1=detA1AC    (2)

所以其实我们只用研究 A C ⊤ \bm{A}\bm{C}^\top AC 即可。让我们把这两个矩阵展开,
[ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] [ c 11 c 21 . . . c n 1 c 12 c 22 . . . c n 2 . . . . . . . . . . . . c 1 n c 2 n . . . c n n ] \begin{bmatrix} {a_{11}} & {a_{12}} & ... & {a_{1n}} \\ {a_{21}} & {a_{22}} & ... & {a_{2n}} \\ ... & ... & ... & ... \\ {a_{n1}} & {a_{n2}} & ... & {a_{nn}} \\ \end{bmatrix} \begin{bmatrix} {c_{11}} & {c_{21}} & ... & {c_{n1}} \\ {c_{12}} & {c_{22}} & ... & {c_{n2}} \\ ... & ... & ... & ... \\ {c_{1n}} & {c_{2n}} & ... & {c_{nn}} \\ \end{bmatrix} a11a21...an1a12a22...an2............a1na2n...annc11c12...c1nc21c22...c2n............cn1cn2...cnn

其中 c i j c_{ij} cij a i j a_{ij} aij 的cofactor. 注意 C \bm{C} C 被转置了。

  1. 首先,我们看 A \bm{A} A 的第一行乘以 C \bm{C} C 的第一列是什么结果, 这就是行列式 det ( A ) \text{det}(\bm{A}) det(A) 按第一行展开嘛,所以内积结果就是 det ( A ) \text{det}(\bm{A}) det(A).
  2. 更进一步, A \bm{A} A 的第 i i i 行乘以 C \bm{C} C 的第 i i i 列就是行列式按第 i i i 行展开,所以内积结果就是 det ( A ) \text{det}(\bm{A}) det(A). 因此 A C ⊤ \bm{A}\bm{C}^\top AC 的对角线元素全部都是 det ( A ) \text{det}(\bm{A}) det(A).
  3. 我们再来看 A C ⊤ \bm{A}\bm{C}^\top AC 的非对角线元素。实际上就是 A \bm{A} A 的第 i i i 行乘以 C \bm{C} C 的第 j j j 列的结果 ( i ≠ j i\neq j i=j). 此时相当于是 A \bm{A} A 的第 i i i 行 乘以其 第 j j j 行对应的cofactor。这个结果是零。究其原因,我们可以把它想象成把矩阵 A \bm{A} A 的第 j j j 行换成跟第 i i i 行一样的元素之后得到的矩阵的行列式 (按照第 j j j 行展开后就是内积结果)。这个新得到的矩阵有两个相同的行,因此行列式为 0.

Overall, A C ⊤ = det ( A ) I n \bm{A}\bm{C}^\top=\text{det}(\bm{A})\bm{I_n} AC=det(A)In. 代入(2)则有 A A − 1 = I n \bm{AA}^{-1}=\bm{I_n} AA1=In, (1) 式成立。

克拉默法则

行列式的第二个应用由 Cramer 给出,实际上他是用行列式的方式把 A x = b \bm{Ax=b} Ax=b A \bm{A} A满秩时的唯一解表示了出来。

首先,
A x = b \bm{Ax=b} Ax=b

x = A − 1 b = 1 det ( A ) C ⊤ b \bm{x=A^{-1}b}=\frac{1}{\text{det}(\bm{A})}\bm{C}^\top \bm{b} x=A1b=det(A)1Cb

Cramer 给了这样一个insight, x \bm{x} x 的每一项的形式长这样:
x j = det ( B j ) det ( A )      ( 3 ) \bm{x}_j=\frac{\text{det}(\bm{B_j})}{\text{det}(\bm{A})}~~~~(3) xj=det(A)det(Bj)    (3)

而且他还给出了 B j \bm{B_j} Bj 的形式。其实只要有这个insight, B j \bm{B_j} Bj 也不是很难找,拆解开 C ⊤ b \bm{C}^\top \bm{b} Cb, we have
[ c 11 c 21 . . . c n 1 c 12 c 22 . . . c n 2 . . . . . . . . . . . . c 1 n c 2 n . . . c n n ] [ b 1 b 2 . . . b n ] \begin{bmatrix} {c_{11}} & {c_{21}} & ... & {c_{n1}} \\ {c_{12}} & {c_{22}} & ... & {c_{n2}} \\ ... & ... & ... & ... \\ {c_{1n}} & {c_{2n}} & ... & {c_{nn}} \\ \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ ... \\ b_n \\ \end{bmatrix} c11c12...c1nc21c22...c2n............cn1cn2...cnnb1b2...bn

所以 B j \bm{B_j} Bj 其实就是矩阵 A \bm{A} A 把第 j j j 列换成 b \bm{b} b 就行了。

最后,我们在强调一遍,给定一个具体的matrix,没人会用 (1) 和 (3)来求逆和解方程,他们的计算复杂度太高了。

行列式的物理意义

Prof. Strang最后给出了一个有趣的idea,关于行列式的物理意义:矩阵的行列式是一个box的体积,box的边由矩阵的各行构成

在这里插入图片描述

如果所示,设一个三阶矩阵各行是 a 1 \bm{a_1} a1, a 2 \bm{a_2} a2, a 3 \bm{a_3} a3, 那 A \bm{A} A 的行列式就是如图所示平行六面体的体积。Prof. Strang额外说了一些reasoning,有兴趣的同学可以去听听~

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值