MIT 线性代数 Linear Algebra 20: 行列式的应用和物理意义

这一节,Prof. Strang主要讲了行列式的两个应用:求矩阵的逆,克拉默法则解 A x = b \bm{Ax=b} Ax=b。最后又讲了矩阵行列式的物理意义。

在开始本节的内容之前,我得强调一下,用行列式来计算是一件非常复杂的事情,因此通常我们不用行列式来求某个具体矩阵的逆或者解方程。最常用的还是matrix elimination:Gauss-Jordan 消元求逆,Gauss消元解方程。但是这不能说行列式解法不重要,因为他提供了一种analytical formula for “matrix inverse” or “solution to linear equations”. 换句话说,在橘真没有具体形式的时候,我们通常用的解方程或求逆算法都无法使用,这时候就可以把他们的逆或方程的解用行列式的方式表示出来。

用行列式求矩阵的逆

先把结论摆出来
A − 1 = 1 det A C ⊤      ( 1 ) \bm{A}^{-1}=\frac{1}{\text{det}\bm{A}} \bm{C}^\top~~~~(1) A1=detA1C    (1)

其中 C n × n \bm{C}_{n\times n} Cn×n 是的每个元素是 A \bm{A} A 对应位置元素的代数余子式 (cofactor).

当然,逆存在的前提是 det ( A ) \text{det}(\bm{A}) det(A) 不为零,也就是说矩阵non-singular。

我们首先给一些例子,再看一下为什么这个等式成立。


例1: 假设 A = I 4 \bm{A=I_4} A=I4 是单位阵, 那么
A − 1 = I 4 = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] \bm{A}^{-1}=\bm{I_4}=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} A1=I4=1000010000100001

det ( A ) = 1 \text{det}(\bm{A})=1 det(A)=1

C = I 4 = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] \bm{C}=\bm{I_4}=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} C=I4=10000100001000

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值