MIT 线性代数 Linear Algebra 21:特征值,特征向量,总结

ok, 终于进入了第二部分的核心,特征值和特征向量

首先,我们可以把矩阵想象成一个函数,普通的函数,给他一个 x x x, 它输出一个 y y y, 对于矩阵 A \bm{A} A 来说,给定一个 vector x ∈ R n \bm{x}\in\mathbb{R}^n xRn, 它输出一个 y ∈ R m \bm{y}\in\mathbb{R}^m yRm:
A x = y \bm{Ax=y} Ax=y

因此当 A \bm{A} A 是方阵时,它相当于是 R n \mathbb{R}^n Rn 空间中的一个变换,把一个 vector 转换成另一个 vector。从这一讲开始,我们关心的问题是,给定一个 A n × n \bm{A}_{n\times n} An×n,有哪些 vector x ∈ R n \bm{x}\in\mathbb{R}^n xRn 经过变换之后仍然和 x \bm{x} x 同向?这句话可以用以下定义表述。

定义

给定矩阵 A n × n \bm{A}_{n\times n} An×n, rank ( A ) = r \text{rank}(\bm{A})=r rank(A)=r,
A x = λ x      ( 1 ) \bm{Ax}=\lambda\bm{x}~~~~(1) Ax=λx    (1)

成立的 λ \lambda λ 称为 A \bm{A} A 的特征值 ( λ \lambda λ 可以是0,可以是负数,可以是复数), x \bm{x} x 称为 A \bm{A} A 的特征向量( 0 0 0 不是特征向量)。

一个首先可以想到的结论是,如果 A \bm{A} A 满秩,则说明 A x ≠ 0 \bm{Ax}\neq 0 Ax=0 if x ≠ 0 \bm{x}\neq 0 x=0, 这也就意味着 λ ≠ 0 \lambda\neq 0 λ=0。反之,如果 A \bm{A} A 不满秩,则说明 A \bm{A} A 的 null space里一定有非零 x \bm{x} x 使得 A x = 0 \bm{Ax=0} Ax=0, 所以 λ = 0 \lambda = 0 λ=</

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值