矩阵线性无关的特征向量个数与矩阵的秩的关系

助教姐姐近来发烧在宿舍躺了两天,现在终于满血复活了!再来絮叨一下今天这个好玩的问题。

先来复述一下这两个概念的含义。矩阵的秩,可以看做是这个矩阵代表的线性变换值域的维数。详细来说,一个n维的矩阵A代表了一个n维的线性变换,这个线性变换A能把每一个n维向量变换为一个新的n维向量(当然这两个向量可能是相等的)。而我们把所有n维向量经过这个线性变换A的所有像组成的集合称为这个线性变换值域的维数。也就是说,一个矩阵的秩越大,它的像空间的维数就越大。

而特征值和特征向量的概念大家就更加熟悉了。如果一个线性变换作用在一个向量上,只改变了它的长度不改变它的方向,那这个向量就是这个线性变换的特征向量,而长度改变的比例就是特征值。而特征值的大小也有其意义,特征值越大,说明矩阵在对应的特征向量方向上的包含的信息量就越多。在实际应用中,往往会对包含信息量较小的方向来做降维处理。

所以我们可以看到,矩阵特征值(特征向量)的个数和矩阵的秩并没有什么联系!可能大家都不太愿意接受这个事实,但实际上就是这个样子的:D

如果放在Jordan标准型的概念下来考虑就是这样的:

代数重数:对应某一个特征值的Jordan块的阶数之和

几何重数:对应某一个特征值的Jordan块的个数

矩阵的秩:n减去0这个特征值对应的Jordan块的个数

我们不仅可以由此看到几何重数一定小于等于代数重数,也能看出所有线性无关的特征向量的个数一定小于等于所有特征值(含重数)的个数。

回到咱们今天的主题,为了让大家更确信矩阵线性无关的特征向量个数与矩阵的秩是无关的,我在下面举了几个例子,大于等于小于的情况都有。


转眼就写到熄灯了,大家晚安啦!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值