蜻蜓算法(Dragonfly Algorithm, DA)
蜻蜓算法的主要灵感来源于自然界中蜻蜓静态和动态的群体行为。优化的两个基本阶段,探索和利用,是通过模拟蜻蜓在导航、寻找食物和躲避敌人时动态或统计群体的社会互动来设计的。
蜻蜓算法的数学模型
DA和PSO算法的主要区别在于考虑了分离、对齐、内聚、吸引、分散和随机游走。虽然文献中有一些作品试图将分离、对齐和内聚整合到PSO中,但本文通过考虑适用于群体中个体的所有可能因素来模拟蜻蜓的群集行为。静态和动态群体的概念也相当新颖。
蜻蜓算法的伪代码:
蜻蜓算法的Matlab代码
% Optimization algorithm:Dragonfly algorithm(DA)
% Reference:Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
% Code by Luzhenhui Yangtze University
%--------------------------------------------------------------------------
% 输出
% Best_score:全局最优适应度值
% Best_pos:全局最优适应度值所对应的最优个体位置信息
% cg_curve:每一次迭代的全局最优适应度值
%--------------------------------------------------------------------------
% 输入
% SearchAgents_no:种群个体数目
% Max_iteration:最大迭代次数
% lb:变量取值的下界
% ub:变量取值的上界
% dim:变量的维度
% fobj:优化目标函数
%--------------------------------------------------------------------------
function [Best_score,Best_pos,cg_curve]=DA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)
cg_curve=zeros(1,Max_iteration);
if size(ub,2)==1
ub=ones(1,dim)*ub;
lb=ones(1,dim)*lb;
end
r=(ub-lb)/10;
Delta_max=(ub-lb)/10;
Food_fitness=inf;
Food_pos=zeros(dim,1);
Enemy_fitness=-inf;
Enemy_pos=zeros(dim,1);
X=initialization(SearchAgents_no,dim,ub,lb);
Fitness=zeros(1,SearchAgents_no);
DeltaX=initialization(SearchAgents_no,dim,ub,lb);
for iter=1:Max_iteration
r=(ub-lb)/4+((ub-lb)*(iter/Max_iteration)*2);
w=0.9-iter*((0.9-0.4)/Max_iteration);
my_c=0.1-iter*((0.1-0)/(Max_iteration/2));
if my_c<0
my_c=0;
end
s=2*rand*my_c; % Seperation weight
a=2*rand*my_c; % Alignment weight
c=2*rand*my_c; % Cohesion weight
f=2*rand; % Food attraction weight
e=my_c; % Enemy distraction weight
for i=1:SearchAgents_no
Fitness(1,i)=fobj(X(:,i)');
if Fitness(1,i)<Food_fitness
Food_fitness=Fitness(1,i);
Food_pos=X(:,i);
end
if Fitness(1,i)>Enemy_fitness
if all(X(:,i)<ub') && all( X(:,i)>lb')
Enemy_fitness=Fitness(1,i);
Enemy_pos=X(:,i);
end
end
end
for i=1:SearchAgents_no
index=0;
neighbours_no=0;
clear Neighbours_DeltaX
clear Neighbours_X
for j=1:SearchAgents_no
Dist2Enemy=distance(X(:,i),X(:,j));
if (all(Dist2Enemy<=r) && all(Dist2Enemy~=0))
index=index+1;
neighbours_no=neighbours_no+1;
Neighbours_DeltaX(:,index)=DeltaX(:,j);
Neighbours_X(:,index)=X(:,j);
end
end
% Seperation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.1)
S=zeros(dim,1);
if neighbours_no>1
for k=1:neighbours_no
S=S+(Neighbours_X(:,k)-X(:,i));
end
S=-S;
else
S=zeros(dim,1);
end
% Alignment%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.2)
if neighbours_no>1
A=(sum(Neighbours_DeltaX')')/neighbours_no;
else
A=DeltaX(:,i);
end
% Cohesion%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.3)
if neighbours_no>1
C_temp=(sum(Neighbours_X')')/neighbours_no;
else
C_temp=X(:,i);
end
C=C_temp-X(:,i);
% Attraction to food%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.4)
Dist2Food=distance(X(:,i),Food_pos(:,1));
if all(Dist2Food<=r)
F=Food_pos-X(:,i);
else
F=0;
end
% Distraction from enemy%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eq. (3.5)
Dist2Enemy=distance(X(:,i),Enemy_pos(:,1));
if all(Dist2Enemy<=r)
Enemy=Enemy_pos+X(:,i);
else
Enemy=zeros(dim,1);
end
for tt=1:dim
if X(tt,i)>ub(tt)
X(tt,i)=lb(tt);
DeltaX(tt,i)=rand;
end
if X(tt,i)<lb(tt)
X(tt,i)=ub(tt);
DeltaX(tt,i)=rand;
end
end
if any(Dist2Food>r)
if neighbours_no>1
for j=1:dim
DeltaX(j,i)=w*DeltaX(j,i)+rand*A(j,1)+rand*C(j,1)+rand*S(j,1);
if DeltaX(j,i)>Delta_max(j)
DeltaX(j,i)=Delta_max(j);
end
if DeltaX(j,i)<-Delta_max(j)
DeltaX(j,i)=-Delta_max(j);
end
X(j,i)=X(j,i)+DeltaX(j,i);
end
else
% Eq. (3.8)
X(:,i)=X(:,i)+Levy(dim)'.*X(:,i);
DeltaX(:,i)=0;
end
else
for j=1:dim
% Eq. (3.6)
DeltaX(j,i)=(a*A(j,1)+c*C(j,1)+s*S(j,1)+f*F(j,1)+e*Enemy(j,1)) + w*DeltaX(j,i);
if DeltaX(j,i)>Delta_max(j)
DeltaX(j,i)=Delta_max(j);
end
if DeltaX(j,i)<-Delta_max(j)
DeltaX(j,i)=-Delta_max(j);
end
X(j,i)=X(j,i)+DeltaX(j,i);
end
end
Flag4ub=X(:,i)>ub';
Flag4lb=X(:,i)<lb';
X(:,i)=(X(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
end
Best_score=Food_fitness;
Best_pos=Food_pos;
cg_curve(iter)=Best_score;
end
end
function o = distance(a,b)
for i=1:size(a,1)
o(1,i)=sqrt((a(i)-b(i))^2);
end
end
function Positions=initialization(SearchAgents_no,dim,ub,lb)
Boundary_no= size(ub,2); % numnber of boundaries
% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
ub_new=ones(1,dim)*ub;
lb_new=ones(1,dim)*lb;
else
ub_new=ub;
lb_new=lb;
end
% If each variable has a different lb and ub
for i=1:dim
ub_i=ub_new(i);
lb_i=lb_new(i);
Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
end
Positions=Positions';
end
function o=Levy(d)
beta=3/2;
%Eq. (3.10)
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
u=randn(1,d)*sigma;
v=randn(1,d);
step=u./abs(v).^(1/beta);
% Eq. (3.9)
o=0.01*step;
end
参考文献:Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural computing and applications, 2016, 27: 1053-1073.
该博客主要分享蜻蜓算法的代码,并带有中英文注释!
分享不易,喜欢的请大家点赞加收藏,谢谢!