【Matlab】智能优化算法_蜻蜓优化算法DA

1.背景介绍

提出了一种新的群智能优化技术——蜻蜓算法。DA算法的主要灵感来源于自然界中蜻蜓的静态和动态群集行为。优化的两个重要阶段,探索和开发,是通过建模蜻蜓在导航、寻找食物和躲避敌人时的社交互动来设计的。

2.灵感

蜻蜓是一种奇特的昆虫。全世界有近3000种不同种类的这种昆虫。如图1所示,蜻蜓的生命周期包括两个主要里程碑:若虫和成虫。它们一生中的大部分时间都在若虫身上度过,并经过变质作用成为成虫。

在这里插入图片描述

蜻蜓被认为是捕食自然界中几乎所有其他小昆虫的小型食肉动物。蜻蜓也捕食其他海洋昆虫,甚至是小型鱼类。蜻蜓的有趣之处在于它们独特而罕见的群集行为。蜻蜓群集的目的只有两个:狩猎和迁徙。前者被称为静态(进食)群体,后者被称为动态(迁徙)群体。
在静止的群体中,蜻蜓组成小团体,在一小块区域内来回飞行,捕食蝴蝶和蚊子等其他飞行猎物。飞行轨迹的局部运动和突变是静止蜂群的主要特征。然而,在动态群中,大量的蜻蜓会在长距离内向一个方向移动。
DA算法的主要灵感来源于静态和动态群集行为。这两种群集行为与使用元启发式优化的两个主要阶段非常相似:探索和开发。蜻蜓会产生亚群,并以静态群的形式飞越不同的区域,这是探索阶段的主要目标。然而,在静态群体中,蜻蜓以更大的群体沿着一个方向飞行,这在开发阶段是有利的。这两个阶段在以下部分中进行了数学实现。

3.公式推导

3.1 勘探和开发操作

蜂群的行为遵循三个基本原理

  • 分离,是指个体与附近其他个体之间的静态碰撞避免。
  • 对齐,表示个体与附近其他个体的速度匹配。
  • 凝聚力,指的是个人倾向于社区的中心。

任何蜂群的主要目标都是生存,所以所有的个体都应该被吸引到食物来源和分散外部敌人的注意力。考虑到这两种行为,群体中个体的位置更新有五个主要因素,如图2所示。

在这里插入图片描述

这些行为的数学模型如下:分离计算如下

在这里插入图片描述

其中X是当前个体的位置,Xj表示第j个相邻个体的位置并且N是相邻个体的数量。路线计算如下:

在这里插入图片描述

其中Xj表示第j个相邻个体的速度。内聚力计算如下:

在这里插入图片描述

其中X是当前个体的位置,N是邻域的数量,Xj表示第j个相邻个体的位置。

对食物来源的吸引力计算如下:

在这里插入图片描述

其中X是当前个人的位置,X+显示食物来源的位置。
向外分散敌人注意力的计算方法如下:

在这里插入图片描述

其中X是当前个人的位置,X-表示敌人的位置。
本文假设蜻蜓的行为是这五种矫正模式的结合。
为了更新人工蜻蜓在搜索空间中的位置并模拟它们的运动,考虑了两个向量:步长(△X)和位置(X)。步长向量类似于粒子群算法中的速度向量,DA算法是在粒子群算法框架的基础上开发的。步长矢量显示了蜻蜓的运动方向,定义如下(注意,人工蜻蜓的位置更新模型是在一维中定义的,但引入的方法可以扩展到更高的维度):

在这里插入图片描述

其中s表示分离权重,Si表示第i个个体的分离,a是排列权重,a是第i个个人的排列,c表示附着权重,Ci是第i个人的内聚力,f是食物因子,Fi是第i个个体的食物源,e是敌人因子,Ei是第i-个个体的敌人位置,w是惯性权重,t是迭代计数器。
在计算步长矢量之后,位置矢量计算如下:

在这里插入图片描述

其中t是当前迭代。
通过分离、对齐、内聚、食物和敌人因素(s、a、c、f和e),可以在优化过程中实现不同的探索和探索行为。
蜻蜓的邻居非常重要,因此假设每只人工蜻蜓周围都有一定半径的邻居(2D空间中的圆圈、3D空间中的球体或nD空间中的超球体)。使用所提出的数学模型,蜻蜓随着邻域半径的增加而群集行为的一个例子如图3所示。

在这里插入图片描述

如前一小节所述,蜻蜓只表现出两种类型的群体:静态和动态,如图4所示。从这张图中可以看出,蜻蜓倾向于对齐飞行,同时在动态的群体中保持适当的分离和凝聚力。然而,在一个静止的群体中,结盟度很低,而攻击猎物的凝聚力很高。因此,我们在探索搜索空间时为蜻蜓分配高对齐和低内聚权重,在开发搜索空间时分配低对齐和高内聚权重。对于勘探和开发之间的过渡,邻域的半径与迭代次数成比例地增加。
平衡勘探和开发的另一种方法是在优化过程中自适应地调整群集因子(s、a、c、f、e和w)。

在这里插入图片描述

这里可能会出现一个问题,即如何在优化过程中保证蜻蜓的收敛性。为了从探索空间过渡到利用搜索空间,需要阻力自适应地改变其权重。还假设,随着优化过程的进行,蜻蜓往往会看到更多的蜻蜓来调整飞行路径。换句话说,邻域面积也增加了,从而群在优化的最后阶段成为一组,以收敛到全局最优。食物来源和敌人是从迄今为止发现的整个蜂群的最佳和最差解决方案中选择的。这导致向搜索空间的有希望的区域收敛,并向外发散搜索空间的无希望的区域。

为了提高人工蜻蜓的随机性、随机行为和探索性,当没有相邻的解决方案时,它们需要使用随机行走(Le´vy flight)在搜索空间周围飞行。在这种情况下,蜻蜓的位置使用以下方程进行更新:

在这里插入图片描述

其中t是当前迭代,d是位置向量的维度。

Le´vy的计算公式:

在这里插入图片描述

其中r1,r2是[0,1]中的两个随机数,贝塔是常数(在本工作中等于1.5)

在这里插入图片描述

r(x) = (x-1)!

4.算法流程图

在这里插入图片描述

5.文件结构

在这里插入图片描述

DA.m							% 蚁狮优化算法
distance.m						% 计算欧几里得距离
func_plot.m						% 绘制的基准函数
Get_Functions_details.m			% 基准的全部信息和实现
initialization.m				% 初始化
Levy.m							% Levy指数和系数
main.m							% 主函数

6.伪代码

在这里插入图片描述

7.详细代码及注释

7.1 DA.m

function [Best_score,Best_pos,cg_curve]=DA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

display('DA is optimizing your problem');
cg_curve=zeros(1,Max_iteration);

if size(ub,2)==1
    ub=ones(1,dim)*ub;
    lb=ones(1,dim)*lb;
end

%The initial radius of gragonflies' neighbourhoods
r=(ub-lb)/10;
Delta_max=(ub-lb)/10;

Food_fitness=inf;
Food_pos=zeros(dim,1);

Enemy_fitness=-inf;
Enemy_pos=zeros(dim,1);

X=initialization(SearchAgents_no,dim,ub,lb);
Fitness=zeros(1,SearchAgents_no);

DeltaX=initialization(SearchAgents_no,dim,ub,lb);

for iter=1:Max_iteration
    
    r=(ub-lb)/4+((ub-lb)*(iter/Max_iteration)*2);
    
    w=0.9-iter*((0.9-0.4)/Max_iteration);
       
    my_c=0.1-iter*((0.1-0)/(Max_iteration/2));
    if my_c<0
        my_c=0;
    end
    
    s=2*rand*my_c; % Seperation weight
    a=2*rand*my_c; % Alignment weight
    c=2*rand*my_c; % Cohesion weight
    f=2*rand;      % Food attraction weight
    e=my_c;        % Enemy distraction weight
    
    for i=1:SearchAgents_no %Calculate all the objective values first
        Fitness(1,i)=fobj(X(:,i)');
        if Fitness(1,i)<Food_fitness
            Food_fitness=Fitness(1,i);
            Food_pos=X(:,i);
        end
        
        if Fitness(1,i)>Enemy_fitness
            if all(X(:,i)<ub') && all( X(:,i)>lb')
                Enemy_fitness=Fitness(1,i);
                Enemy_pos=X(:,i);
            end
        end
    end
    
    for i=1:SearchAgents_no
        index=0;
        neighbours_no=0;
        
        clear Neighbours_DeltaX
        clear Neighbours_X
        %find the neighbouring solutions
        for j=1:SearchAgents_no
            Dist2Enemy=distance(X(:,i),X(:,j));
            if (all(Dist2Enemy<=r) && all(Dist2Enemy~=0))
                index=index+1;
                neighbours_no=neighbours_no+1;
                Neighbours_DeltaX(:,index)=DeltaX(:,j);
                Neighbours_X(:,index)=X(:,j);
            end
        end
        
        % Seperation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Eq. (3.1)
        S=zeros(dim,1);
        if neighbours_no>1
            for k=1:neighbours_no
                S=S+(Neighbours_X(:,k)-X(:,i));
            end
            S=-S;
        else
            S=zeros(dim,1);
        end
        
        % Alignment%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Eq. (3.2)
        if neighbours_no>1
            A=(sum(Neighbours_DeltaX')')/neighbours_no;
        else
            A=DeltaX(:,i);
        end
        
        % Cohesion%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Eq. (3.3)
        if neighbours_no>1
            C_temp=(sum(Neighbours_X')')/neighbours_no;
        else
            C_temp=X(:,i);
        end
        
        C=C_temp-X(:,i);
        
        % Attraction to food%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Eq. (3.4)
        Dist2Food=distance(X(:,i),Food_pos(:,1));
        if all(Dist2Food<=r)
            F=Food_pos-X(:,i);
        else
            F=0;
        end
        
        % Distraction from enemy%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Eq. (3.5)
        Dist2Enemy=distance(X(:,i),Enemy_pos(:,1));
        if all(Dist2Enemy<=r)
            Enemy=Enemy_pos+X(:,i);
        else
            Enemy=zeros(dim,1);
        end
        
        for tt=1:dim
            if X(tt,i)>ub(tt)
                X(tt,i)=lb(tt);
                DeltaX(tt,i)=rand;
            end
            if X(tt,i)<lb(tt)
                X(tt,i)=ub(tt);
                DeltaX(tt,i)=rand;
            end
        end
        
        if any(Dist2Food>r)
            if neighbours_no>1
                for j=1:dim
                    DeltaX(j,i)=w*DeltaX(j,i)+rand*A(j,1)+rand*C(j,1)+rand*S(j,1);
                    if DeltaX(j,i)>Delta_max(j)
                        DeltaX(j,i)=Delta_max(j);
                    end
                    if DeltaX(j,i)<-Delta_max(j)
                        DeltaX(j,i)=-Delta_max(j);
                    end
                    X(j,i)=X(j,i)+DeltaX(j,i);
                end
            else
                % Eq. (3.8)
                X(:,i)=X(:,i)+Levy(dim)'.*X(:,i);
                DeltaX(:,i)=0;
            end
        else
            for j=1:dim
                % Eq. (3.6)
                DeltaX(j,i)=(a*A(j,1)+c*C(j,1)+s*S(j,1)+f*F(j,1)+e*Enemy(j,1)) + w*DeltaX(j,i);
                if DeltaX(j,i)>Delta_max(j)
                    DeltaX(j,i)=Delta_max(j);
                end
                if DeltaX(j,i)<-Delta_max(j)
                    DeltaX(j,i)=-Delta_max(j);
                end
                X(j,i)=X(j,i)+DeltaX(j,i);
            end 
        end
        
        Flag4ub=X(:,i)>ub';
        Flag4lb=X(:,i)<lb';
        X(:,i)=(X(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
        
    end
    Best_score=Food_fitness;
    Best_pos=Food_pos;
    
    cg_curve(iter)=Best_score;
end

7.2 distance.m

function o = distance(a,b)

for i=1:size(a,1)
    o(1,i)=sqrt((a(i)-b(i))^2);
end

7.3 func_plot.m

function func_plot(func_name)

[lb,ub,dim,fobj]=Get_Functions_details(func_name);

switch func_name 
    case 'F1' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F2' 
        x=-100:2:100; y=x; %[-10,10]
        
    case 'F3' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F4' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F5' 
        x=-200:2:200; y=x; %[-5,5]
    case 'F6' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F7' 
        x=-1:0.03:1;  y=x  %[-1,1]
    case 'F8' 
        x=-500:10:500;y=x; %[-500,500]
    case 'F9' 
        x=-5:0.1:5;   y=x; %[-5,5]    
    case 'F10' 
        x=-20:0.5:20; y=x;%[-500,500]
    case 'F11' 
        x=-500:10:500; y=x;%[-0.5,0.5]
    case 'F12' 
        x=-10:0.1:10; y=x;%[-pi,pi]
    case 'F13' 
        x=-5:0.08:5; y=x;%[-3,1]
    case 'F14' 
        x=-100:2:100; y=x;%[-100,100]
    case 'F15' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F16' 
        x=-1:0.01:1; y=x;%[-5,5]
    case 'F17' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F18' 
        x=-5:0.06:5; y=x;%[-5,5]
    case 'F19' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F20' 
        x=-5:0.1:5; y=x;%[-5,5]        
    case 'F21' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F22' 
        x=-5:0.1:5; y=x;%[-5,5]     
    case 'F23' 
        x=-5:0.1:5; y=x;%[-5,5]  
end    

    

L=length(x);
f=[];

for i=1:L
    for j=1:L
        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
            f(i,j)=fobj([x(i),y(j)]);
        end
        if strcmp(func_name,'F15')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
        if strcmp(func_name,'F19')==1
            f(i,j)=fobj([x(i),y(j),0]);
        end
        if strcmp(func_name,'F20')==1
            f(i,j)=fobj([x(i),y(j),0,0,0,0]);
        end       
        if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end          
    end
end

surfc(x,y,f,'LineStyle','none');

end

7.4 Get_Functions_details.m

function [lb,ub,dim,fobj] = Get_Functions_details(F)


switch F
    case 'F1'
        fobj = @F1;
        lb=-100;
        ub=100;
        dim=10;
        
    case 'F2'
        fobj = @F2;
        lb=-10;
        ub=10;
        dim=10;
        
    case 'F3'
        fobj = @F3;
        lb=-100;
        ub=100;
        dim=10;
        
    case 'F4'
        fobj = @F4;
        lb=-100;
        ub=100;
        dim=10;
        
    case 'F5'
        fobj = @F5;
        lb=-30;
        ub=30;
        dim=10;
        
    case 'F6'
        fobj = @F6;
        lb=-100;
        ub=100;
        dim=10;
        
    case 'F7'
        fobj = @F7;
        lb=-1.28;
        ub=1.28;
        dim=10;
        
    case 'F8'
        fobj = @F8;
        lb=-500;
        ub=500;
        dim=10;
        
    case 'F9'
        fobj = @F9;
        lb=-5.12;
        ub=5.12;
        dim=10;
        
    case 'F10'
        fobj = @F10;
        lb=-32;
        ub=32;
        dim=10;
        
    case 'F11'
        fobj = @F11;
        lb=-600;
        ub=600;
        dim=10;
        
    case 'F12'
        fobj = @F12;
        lb=-50;
        ub=50;
        dim=10;
        
    case 'F13'
        fobj = @F13;
        lb=-50;
        ub=50;
        dim=10;
        
    case 'F14'
        fobj = @F14;
        lb=-65.536;
        ub=65.536;
        dim=2;
        
    case 'F15'
        fobj = @F15;
        lb=-5;
        ub=5;
        dim=4;
        
    case 'F16'
        fobj = @F16;
        lb=-5;
        ub=5;
        dim=2;
        
    case 'F17'
        fobj = @F17;
        lb=[-5,0];
        ub=[10,15];
        dim=2;
        
    case 'F18'
        fobj = @F18;
        lb=-2;
        ub=2;
        dim=2;
        
    case 'F19'
        fobj = @F19;
        lb=0;
        ub=1;
        dim=3;
        
    case 'F20'
        fobj = @F20;
        lb=0;
        ub=1;
        dim=6;     
        
    case 'F21'
        fobj = @F21;
        lb=0;
        ub=10;
        dim=4;    
        
    case 'F22'
        fobj = @F22;
        lb=0;
        ub=10;
        dim=4;    
        
    case 'F23'
        fobj = @F23;
        lb=0;
        ub=10;
        dim=4;            
end

end

% F1

function o = F1(x)
o=sum(x.^2);
end

% F2

function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end

% F3

function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
    o=o+sum(x(1:i))^2;
end
end

% F4

function o = F4(x)
o=max(abs(x));
end

% F5

function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end

% F6

function o = F6(x)
o=sum(abs((x+.5)).^2);
end

% F7

function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end

% F8

function o = F8(x)
o=sum(-x.*sin(sqrt(abs(x))));
end

% F9

function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end

% F10

function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end

% F11

function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
end

% F12

function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end

% F13

function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end

% F14

function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25
    bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end

% F15

function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end

% F16

function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end

% F17

function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end

% F18

function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end

% F19

function o = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F20

function o = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F21

function o = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:5
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F22

function o = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:7
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F23

function o = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:10
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end

7.5 initialization.m

function Positions=initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % numnber of boundaries

% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
    ub_new=ones(1,dim)*ub;
    lb_new=ones(1,dim)*lb;
else
     ub_new=ub;
     lb_new=lb;   
end

% If each variable has a different lb and ub
    for i=1:dim
        ub_i=ub_new(i);
        lb_i=lb_new(i);
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
    end

Positions=Positions';

7.5 Levy.m

function o=Levy(d)

beta=3/2;
%Eq. (3.10)
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
u=randn(1,d)*sigma;
v=randn(1,d);
step=u./abs(v).^(1/beta);

% Eq. (3.9)
o=0.01*step;

7.5 main.m

在这里插入代码片clear all 
clc

SearchAgents_no=40; % Number of search agents

Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)

Max_iteration=500; % Maximum numbef of iterations

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,cg_curve]=DA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',[400 400 560 190])

%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Test function')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
grid off

%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','r')
title('Convergence curve')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid off
box on
legend('DA')

display(['The best solution obtained by DA is : ', num2str(Best_pos')]);
display(['The best optimal value of the objective funciton found by DA is : ', num2str(Best_score)]);

8.运行结果

在这里插入图片描述

9.参考文献

[1]Seyedali Mirjalili. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications,2016,27(4).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码两年半的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值