目录
2.3【node1执行】修改配置文件,spark-env.sh
2. 2【node1操作】修改配置文件,conf/flink-conf.yaml
2.3 【node1操作】,修改配置文件,conf/slaves
注意:
本小节的操作,基于:大数据集群(Hadoop生态)安装部署环节中所构建的Hadoop集群,如果没有Hadoop集群,请参阅前置内容,部署好环境。
大数据集群(Hadoop生态)安装部署:
大数据集群(Hadoop生态)安装部署_时光の尘的博客-CSDN博客
大数据NoSQL数据库HBase集群部署:
分布式内存计算Spark环境部署
1. 简介
Spark是一款分布式内存计算引擎,可以支撑海量数据的分布式计算。
Spark在大数据体系是明星产品,作为最新一代的综合计算引擎,支持离线计算和实时计算。
在大数据领域广泛应用,是目前世界上使用最多的大数据分布式计算引擎。
我们将基于前面构建的Hadoop集群,部署Spark Standalone集群。
2. 安装
2.1【node1执行】下载并解压
wget https: / archive.apache.org/dist/spark/spark-2.4.5/spark-2.4.5-bin-hadoop2.7.tgz
# 解压
tar -zxvf spark-2.4.5-bin-hadoop2.7.tgz -C /export/server/
# 软链接
ln -s /export/server/spark-2.4.5-bin-hadoop2.7 /export/server/spark
2.2【node1执行】修改配置文件名称
# 改名
cd /export/server/spark/conf
mv spark-env.sh.template spark-env.sh
mv slaves.template slaves
2.3【node1执行】修改配置文件,spark-env.sh
#设置JAVA安装目录
JAVA_HOME=/export/server/jdk
#HADOOP软件配置文件目录,读取HDFS上文件和运行YARN集群
HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop
YARN_CONF_DIR=/export/server/hadoop/etc/hadoop
#指定spark老大Master的IP和提交任务的通信端口
export SPARK_MASTER_HOST=node1
export SPARK_MASTER_PORT=7077
SPARK_MASTER_WEBUI_PORT=8080
SPARK_WORKER_CORES=1
SPARK_WORKER_MEMORY=1g
2.4 【node1执行】修改配置文件,slaves
node1
node2
node3
2.5【node1执行】分发
scp -r spark-2.4.5-bin-hadoop2.7 node2:$PWD
scp -r spark-2.4.5-bin-hadoop2.7 node3:$PWD