【定义】
CRF++是著名的条件随机场的开源工具,也是目前综合性能最佳的CRF工具,采用C++语言编写而成。其最重要的功能是采用了特征模板。这样就可以自动生成一系列的特征函数,而不用我们自己生成特征函数,我们要做的就是寻找特征,比如词性等。
【安装】
在Windows中CRF++不需要安装,下载解压CRF++0.58文件即可以使用
【语料】
需要注意字与标签之间的分隔符为制表符\t
played VBD O
on IN O
Monday NNP O
( ( O
home NN O
team NN O
in IN O
CAPS NNP O
【特征模板】
模板是使用CRF++的关键,它能帮助我们自动生成一系列的特征函数,而不用我们自己生成特征函数,而特征函数正是CRF算法的核心概念之一。
【训练】
【预测】
【实例】
该语料库一共42000行,每三行为一组,其中,第一行为英语句子,第二行为句子中每个单词的词性,第三行为NER系统的标注,共分4个标注类别:PER(人名),LOC(位置),ORG(组织)以及MISC,其中B表示开始,I表示中间,O表示单字词,不计入NER,sO表示特殊单字词。首先我们将该语料分为训练集和测试集,比例为9:1。
# -*- coding: utf-8 -*-
# NER预料train.txt所在的路径
dir = "/Users/Shared/CRF_4_NER/CRF_TEST"
with open("%s/train.txt" % dir, "r") as f:
sents = [line.strip() for line in f.readlines()]
# 训练集与测试集的比例为9:1
RATIO = 0.9
train_num = int((len(sents)//3)*RATIO)
# 将文件分为训练集与测试集
with open("%s/NER_train.data" % dir, "w") as g:
for i in range(train_num):
words = sents[3*i].split('\t')
postags = sents[3*i+1].split('\t')
tags = sents[3*i+2].split('\t')
for word, postag, tag in zip(words, postags, tags):
g.write(word+' '+postag+' '+tag+'\n')
g.write('\n')
with open("%s/NER_test.data" % dir, "w") as h: