【NLP】词的表示方式及word embeddings代码

博客探讨了词的表示方式,从one-hot编码的缺陷出发,介绍了分布式表示,包括基于矩阵、聚类和神经网络的方法。重点讲解了word embedding,如何通过word2vec将词映射到低维空间,并提供了使用gensim加载预训练词向量的代码示例。
摘要由CSDN通过智能技术生成

1.one-hot编码

  • 给每个词分配一个数字ID,如“爸爸”=1=[010],“妈妈”=2=[001]
  • 缺点(1)高维度,稀疏(2)词之间相互独立,无法表示词之间的语义

2.分布式表示

(1)基于矩阵的分布表示

  • 词的相似度转换为向量的空间距离
  • Global Vector模型

(2)基于聚类的分布表示
(3)基于神经网络的分布表示----词向量/词嵌入

  • word embedding词嵌入空间
    在这里插入图片描述
  • 把one-hot的向量空间映射到低维、浮点数表示的向量空间中。
  • 在这里插入图片描述
    在这里插入图片描述
  • 3.一般使用别人训练好的词向量,使用的语料库领域相同的。

3.word embedding代码

(1)安装gensim
gensim是处理word embeddings的python包

pip install gensim

(2)下载预训练好的词向量
google新闻训练的word2vec模型,Google Drive link:Google news Word2Vec

# Install the PyDrive wrapper & import libraries.
# Th
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值