1.one-hot编码
- 给每个词分配一个数字ID,如“爸爸”=1=[010],“妈妈”=2=[001]
- 缺点(1)高维度,稀疏(2)词之间相互独立,无法表示词之间的语义
2.分布式表示
(1)基于矩阵的分布表示
- 词的相似度转换为向量的空间距离
- Global Vector模型
(2)基于聚类的分布表示
(3)基于神经网络的分布表示----词向量/词嵌入
- word embedding词嵌入空间
- 把one-hot的向量空间映射到低维、浮点数表示的向量空间中。
- 3.一般使用别人训练好的词向量,使用的语料库领域相同的。
3.word embedding代码
(1)安装gensim
gensim是处理word embeddings的python包
pip install gensim
(2)下载预训练好的词向量
google新闻训练的word2vec模型,Google Drive link:Google news Word2Vec
# Install the PyDrive wrapper & import libraries.
# Th