pandas高级篇—apply

1.apply

apply会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起

2.head()

(1)默认查找前五条数据,head(n)查找前n条数据
这里写图片描述
(2)定义函数,(函数名为top)查找前n条数据
这里写图片描述
(3)apply()——–>分别求出抽烟和不抽烟的客户中消费占比排在前五的客户
这里写图片描述
这里写图片描述
(4)如果传给apply的函数能够接受其他参数或关键字,则可以将这些内容放在函数名后面一并传入
这里写图片描述

3.分位数和桶分析

pandas有一些能根据指定面元或样本分位数将数据拆分成多块的工具(比如cut和qcut)。
将这些函数跟groupby结合起来,就能非常轻松地实现对数据集的桶(bucket)或分位数
(quantile)分析了

(1)pd.cut
这里写图片描述
(2)定义函数,对数据进行统计
这里写图片描述
(3)定义函数,求加权平均数
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值