手把手教你学simulink(95.5)--PID控制实例:基于Simulink的PID控制机器人速度控制系统建模与仿真

目录

基于Simulink的PID控制机器人速度控制系统建模与仿真

1. 背景介绍

1.1 项目背景

1.2 系统描述

1.3 应用场景

2. 系统架构设计

2.1 系统框图

2.2 数学模型

3. Simulink仿真模型步骤

3.1 创建Simulink模型

3.2 添加模块

3.2.1 目标速度输入模块

3.2.2 PID控制器模块

3.2.3 环境模型模块

3.2.4 速度传感器模块

3.2.5 执行机构模块

3.2.6 显示模块

3.3 连接模块

3.4 设置仿真参数

3.5 运行仿真

4. PID参数调优

4.1 Ziegler-Nichols法

4.2 自动调参工具

5. 结果分析

5.1 观察速度曲线

5.2 参数调整

6. 示例代码片段

7. 结束语


基于Simulink的PID控制机器人速度控制系统建模与仿真


1. 背景介绍
1.1 项目背景

机器人速度控制是工业机器人、移动机器人和服务机器人等领域的关键问题之一。通过精确的速度控制,机器人能够实现稳定的运动和高效的任务执行。PID(比例-积分-微分)控制器因其结构简单、性能稳定且易于实现而被广泛应用于机器人速度控制系统中。

本项目旨在通过MATLAB/Simulink平台设计和验证一个基于PID控制的机器人速度控制系统,重点研究PID参数调优方法、系统动态响应特性以及稳态误差消除能力。

1.2 系统描述

机器人速度控制系统通常包括以下几个关键部分:

  • 目标速度设定模块:用户指定的目标速度。
  • 速度传感器模块:实时监测当前机器人的速度,并将信号反馈给控制器。
  • PID控制器模块:根据目标速度与实际速度的偏差计算控制量以调节机器人运动。
  • 执行机构模块:根据PID控制器输出调整电机转速或方向。

主要目标是实现以下功能:

  • 快速响应目标速度的变化。
  • 消除稳态误差,确保机器人速度稳定在目标值附近。
  • 抑制外界干扰对系统的影响。
1.3 应用场景
  • 工业机器人:如机械臂的速度控制,用于精准操作和高效作业。
  • 移动机器人:如AGV(自动导引车)、无人机等需要精确速度控制的设备。
  • 服务机器人:如家用清洁机器人、医疗辅助机器人等需要平稳运行的设备。

2. 系统架构设计
2.1 系统框图

整个机器人速度控制系统可以分为以下几个模块:

  1. 目标速度输入模块:用户指定的目标速度。
  2. 速度传感器模块:模拟速度传感器采集当前机器人速度。
  3. PID控制器模块:根据目标速度与实际速度的偏差计算控制量。
  4. 执行机构模块:根据PID控制器输出调整电机转速或方向。
  5. 环境模型模块:模拟机器人运动的动力学过程。

系统框图如下所示:

 

深色版本

目标速度输入 → PID控制器 → 执行机构 → 环境模型 → 速度传感器 → 反馈回路
2.2 数学模型

假设机器人速度变化可以用一阶惯性环节表示: G(s)=Kτs+1G(s)=τs+1K​ 其中:

  • KK 是系统的增益。
  • ττ 是时间常数。

PID控制器的传递函数为: C(s)=Kp+Kis+KdsC(s)=Kp​+sKi​​+Kd​s 其中:

  • KpKp​ 是比例增益。
  • KiKi​ 是积分增益。
  • KdKd​ 是微分增益。

3. Simulink仿真模型步骤
3.1 创建Simulink模型
  1. 打开MATLAB并新建一个Simulink模型文件。
  2. 定义模型名称为RobotSpeedControlSystem
 

matlab

深色版本

modelName = 'RobotSpeedControlSystem';
new_system(modelName);
open_system(modelName);
3.2 添加模块
3.2.1 目标速度输入模块

添加一个“Step”模块作为目标速度输入。

 

matlab

深色版本

add_block('simulink/Sources/Step', [modelName '/Setpoint']);
set_param([modelName '/Setpoint'], 'StartTime', '0'); % 设置阶跃开始时间为0秒
set_param([modelName '/Setpoint'], 'FinalValue', '100'); % 设置目标速度为100单位
3.2.2 PID控制器模块

添加一个“PID Controller”模块。

 

matlab

深色版本

add_block('simulink/Continuous/PID Controller', [modelName '/PID_Controller']);
set_param([modelName '/PID_Controller'], 'P', '1'); % 初始比例增益
set_param([modelName '/PID_Controller'], 'I', '1'); % 初始积分增益
set_param([modelName '/PID_Controller'], 'D', '0'); % 初始微分增益
3.2.3 环境模型模块

添加一个“Transfer Fcn”模块来模拟机器人运动的动力学过程。

 

matlab

深色版本

add_block('simulink/Continuous/Transfer Fcn', [modelName '/Environment_Model']);
set_param([modelName '/Environment_Model'], 'Numerator', '[1]');
set_param([modelName '/Environment_Model'], 'Denominator', '[10 1]'); % 设置时间常数τ=10
3.2.4 速度传感器模块

添加一个“Gain”模块模拟速度传感器的增益。

 

matlab

深色版本

add_block('simulink/Math Operations/Gain', [modelName '/Sensor']);
set_param([modelName '/Sensor'], 'Gain', '1'); % 假设传感器增益为1
3.2.5 执行机构模块

添加一个“Saturation”模块限制电机输出范围。

 

matlab

深色版本

add_block('simulink/Discontinuities/Saturation', [modelName '/Actuator']);
set_param([modelName '/Actuator'], 'UpperLimit', '100'); % 最大电机输出为100%
set_param([modelName '/Actuator'], 'LowerLimit', '-100'); % 最小电机输出为-100%
3.2.6 显示模块

添加“Scope”模块用于显示速度曲线。

 

matlab

深色版本

add_block('simulink/Sinks/Scope', [modelName '/Speed_Scope']);
3.3 连接模块

将各个模块按照系统框图连接起来。

 

matlab

深色版本

% 连接目标速度输入到PID控制器
add_line(modelName, '/Setpoint/1', '/PID_Controller/1', 'autorouting', 'on');

% 连接PID控制器到执行机构
add_line(modelName, '/PID_Controller/1', '/Actuator/1', 'autorouting', 'on');

% 连接执行机构到环境模型
add_line(modelName, '/Actuator/1', '/Environment_Model/1', 'autorouting', 'on');

% 连接环境模型到速度传感器
add_line(modelName, '/Environment_Model/1', '/Sensor/1', 'autorouting', 'on');

% 连接速度传感器到PID控制器(反馈)
add_line(modelName, '/Sensor/1', '/PID_Controller/2', 'autorouting', 'on');

% 连接环境模型到Scope
add_line(modelName, '/Environment_Model/1', '/Speed_Scope/1', 'autorouting', 'on');
3.4 设置仿真参数

设置仿真时间为30秒。

 

matlab

深色版本

set_param(modelName, 'StopTime', '30'); % 设置仿真时间为30秒
save_system(modelName); % 保存模型
3.5 运行仿真

运行仿真并观察速度变化曲线。

 

matlab

深色版本

open_system(modelName); % 打开Simulink模型
sim(modelName); % 运行仿真
open_system([modelName '/Speed_Scope']); % 查看速度曲线

4. PID参数调优
4.1 Ziegler-Nichols法

使用Ziegler-Nichols法进行PID参数整定:

  1. 将PID控制器设置为纯比例控制(Kp>0,Ki=0,Kd=0Kp​>0,Ki​=0,Kd​=0)。
  2. 逐步增大KpKp​,直到系统出现持续振荡,记录临界增益KuKu​和振荡周期TuTu​。
  3. 根据以下公式计算PID参数:
    • Kp=0.6KuKp​=0.6Ku​
    • Ki=2Kp/TuKi​=2Kp​/Tu​
    • Kd=KpTu/8Kd​=Kp​Tu​/8
4.2 自动调参工具

利用MATLAB的pidtune函数自动优化PID参数。

 

matlab

深色版本

% 定义系统传递函数
sys = tf(1, [10 1]);

% 使用pidtune函数优化PID参数
C = pidtune(sys, 'PID');
disp(C);

% 提取PID参数
Kp = C.Kp;
Ki = C.Ki;
Kd = C.Kd;

% 更新PID控制器参数
set_param([modelName '/PID_Controller'], 'P', num2str(Kp));
set_param([modelName '/PID_Controller'], 'I', num2str(Ki));
set_param([modelName '/PID_Controller'], 'D', num2str(Kd));

5. 结果分析
5.1 观察速度曲线

Scope窗口中查看速度随时间的变化曲线,评估以下性能指标:

  • 上升时间:速度从初始值上升到目标值90%所需的时间。
  • 超调量:速度超过目标值的最大幅度。
  • 稳态误差:速度达到稳态时与目标值的偏差。
5.2 参数调整

根据仿真结果调整PID参数,优化系统性能。例如:

  • 增大KpKp​可加快响应速度,但可能导致超调增加。
  • 增大KiKi​可消除稳态误差,但可能引起振荡。
  • 增大KdKd​可抑制超调,但可能降低系统稳定性。

6. 示例代码片段

以下是一个完整的基于Simulink的PID控制机器人速度控制系统仿真模型的搭建过程。

 

matlab

深色版本

% Step 1: Define model name and create a new system
modelName = 'RobotSpeedControlSystem';
new_system(modelName);
open_system(modelName);

% Step 2: Add Setpoint Input
add_block('simulink/Sources/Step', [modelName '/Setpoint']);
set_param([modelName '/Setpoint'], 'StartTime', '0');
set_param([modelName '/Setpoint'], 'FinalValue', '100');

% Step 3: Add PID Controller
add_block('simulink/Continuous/PID Controller', [modelName '/PID_Controller']);
set_param([modelName '/PID_Controller'], 'P', '1');
set_param([modelName '/PID_Controller'], 'I', '1');
set_param([modelName '/PID_Controller'], 'D', '0');

% Step 4: Add Environment Model
add_block('simulink/Continuous/Transfer Fcn', [modelName '/Environment_Model']);
set_param([modelName '/Environment_Model'], 'Numerator', '[1]');
set_param([modelName '/Environment_Model'], 'Denominator', '[10 1]');

% Step 5: Add Sensor Gain
add_block('simulink/Math Operations/Gain', [modelName '/Sensor']);
set_param([modelName '/Sensor'], 'Gain', '1');

% Step 6: Add Actuator Saturation
add_block('simulink/Discontinuities/Saturation', [modelName '/Actuator']);
set_param([modelName '/Actuator'], 'UpperLimit', '100');
set_param([modelName '/Actuator'], 'LowerLimit', '-100');

% Step 7: Add Scope for Speed Display
add_block('simulink/Sinks/Scope', [modelName '/Speed_Scope']);

% Step 8: Connect Blocks
add_line(modelName, '/Setpoint/1', '/PID_Controller/1', 'autorouting', 'on');
add_line(modelName, '/PID_Controller/1', '/Actuator/1', 'autorouting', 'on');
add_line(modelName, '/Actuator/1', '/Environment_Model/1', 'autorouting', 'on');
add_line(modelName, '/Environment_Model/1', '/Sensor/1', 'autorouting', 'on');
add_line(modelName, '/Sensor/1', '/PID_Controller/2', 'autorouting', 'on');
add_line(modelName, '/Environment_Model/1', '/Speed_Scope/1', 'autorouting', 'on');

% Step 9: Set Simulation Parameters
set_param(modelName, 'StopTime', '30');
save_system(modelName);

% Step 10: Run Simulation
open_system(modelName);
sim(modelName);
open_system([modelName '/Speed_Scope']);

7. 结束语

通过这个项目文档,我们详细介绍了如何在Simulink中建立基于PID控制的机器人速度控制系统仿真模型,并展示了具体的建模步骤、代码实现和仿真结果分析。希望这个示例能够帮助读者更好地理解和应用PID控制技术,并为相关领域的研究和开发提供有价值的参考。如果需要进一步的优化或扩展,可以根据具体的应用需求进行相应的调整和改进

### 回答1: 可以通过在Simulink中添加控制块来实现机械臂轨迹规划,例如:比例积分控制(PI)、比例积分微分控制(PID)、位置控制器,以及其他控制器块。此外,可以添加传感器模块以采集机械臂的实时位置和速度数据,并将这些数据作为参数传入控制块,实现机械臂轨迹规划。 ### 回答2: 机械臂轨迹规划主要是通过控制算法实现机械臂的运动轨迹的规划和控制。在Simulink中,可以使用Block模块来构建控制框图。 首先,需要使用Simulink中的Signal源模块来生成机械臂的期望轨迹信号,信号可以是关节角度、线速度、角速度或者其他控制量。 然后,需要使用Simulink的Block模块来实现机械臂的运动和动力模型。运动模型可以通过使用旋转矩阵、平移矩阵等来计算机械臂各个关节的位置和姿态。动力模型可以用来计算机械臂的力矩和扭矩。 接下来,需要使用Simulink中的Control模块来设计机械臂的控制算法。常用的控制算法包括PID控制器、模糊控制器、最优控制器等。根据机械臂的具体要求,选择合适的控制算法。 最后,使用Simulink中的Scope模块来观察机械臂的实际运动轨迹是否满足期望轨迹。 在Simulink中,通过连接各个模块来构建控制框图,将信号源、运动模型、动力模型和控制算法模块按照依赖关系连接起来,最后使用Scope模块观察结果。 通过这样的Simulink控制框图实现机械臂轨迹规划,可以方便地调整控制算法和参数,快速实现机械臂的运动控制。 ### 回答3: Simulink 是一种流程仿真工具,可以用来模拟和实现各种控制系统。在机械臂轨迹规划方面,Simulink 也提供了一些功能模块可以使用。 一种常见的机械臂轨迹规划方法是通过逆运动来实现。逆运动是根据机械臂的末端位置和姿态来计算每个关节的角度,从而使机械臂能够达到目标位置。Simulink 中可以使用 Forward Kinematics 和 Inverse Kinematics 模块来实现逆运动。 首先,我们需要建立一个模型并添加机械臂模块。可以使用 Robotics System Toolbox 中的机器人模型来实现。接下来,我们可以使用 Forward Kinematics 模块来计算机械臂的末端位置和姿态。 然后,我们可以使用 Inverse Kinematics 模块来计算每个关节的角度。这个模块需要提供目标位置和姿态作为输入,并输出每个关节的角度。可以根据需要选择不同的逆运动算法,如 Jacobian 近似或解析逆运动。 在得到每个关节的角度后,我们可以将其输入到电机控制模块中,以驱动机械臂。这个模块通常会包括电机驱动器、编码器反馈和控制算法。通过控制算法计算电机输出,并将其转换为适当的电机控制信号,以实现机械臂的轨迹规划。 最后,我们可以在 Simulink 中添加显示模块,以便可视化机械臂的运动轨迹。可以使用 3D Animation 模块或 Virtual Reality 模块来实现。 综上所述,通过在 Simulink 中使用 Forward Kinematics 和 Inverse Kinematics 模块,以及电机控制模块和显示模块,我们可以实现机械臂的轨迹规划。这些模块之间的连接和参数设置将决定最终实现的控制框图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蘑菇二号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值