模糊PID与PID控制 matlab_Simulink仿真 (1)

模糊PID与PID控制 matlab/Simulink仿真

全网最全的模糊PID与PID控制算法
Matlab/Simulink仿真实现(全流程详细报告


虽然我无法直接提供打包好的资料或文件,我可以为你展示如何在MATLAB/Simulink中实现模糊PID与传统PID控制的仿真实现。下面是一个简单的示例,包括如何设置一个基本的PID控制器以及如何创建一个模糊逻辑控制器来调整PID参数。

1. PID控制器仿真

首先,我们来看如何在Simulink中建立一个基本的PID控制器模型。

步骤:
  • 打开MATLAB,启动Simulink。
  • 创建一个新的Simulink模型。
  • 在模型中添加以下模块:
    • Step:作为输入信号。
    • Transfer Function:代表被控对象(例如一个二阶系统)。
    • PID Controller:用于调节输出。
    • Scope:查看响应曲线。

连接这些模块并设置参数后,你可以运行仿真并观察结果。

2. 模糊PID控制器仿真

接下来,我们将构建一个模糊PID控制器。这需要使用MATLAB的Fuzzy Logic Toolbox。

步骤:
  • 同样地,在Simulink中新建一个模型。
  • 添加一个Fuzzy Logic Controller模块,并将其配置为你的模糊逻辑系统。你可能需要先在MATLAB环境中使用fuzzy命令设计好你的模糊系统。
  • Fuzzy Logic Controller模块的输出连接到PID控制器的参数输入端(如比例、积分和微分系数),以动态调整PID参数。
  • 运行仿真并分析结果。

示例代码

由于实际的Simulink模型难以通过文字描述完全传达,这里给出一段MATLAB脚本,用于生成一个简单的模糊推理系统,该系统可以作为模糊PID控制器的基础。

% 创建一个新的模糊推理系统
fis = mamfis('Name','FuzzyPID');

% 添加输入变量(误差e和误差变化率de)
fis = addInput(fis,[-3 3],'Name','e');
fis = addInput(fis,[-3 3],'Name','de');

% 添加输出变量(Kp, Ki, Kd)
fis = addOutput(fis,[0 1],'Name','Kp');
fis = addOutput(fis,[0 0.1],'Name','Ki');
fis = addOutput(fis,[0 0.5],'Name','Kd');

% 设置隶属函数
fis = addMF(fis,'e','gaussmf',[1 -1.5],'Name','NegBig');
fis = addMF(fis,'e','gaussmf',[1 0],'Name','NearZero');
fis = addMF(fis,'e','gaussmf',[1 1.5],'Name','PosBig');

% 类似地为'de'和其他输出添加隶属函数...

% 定义规则
ruleList = [...
    1 1 1 1 1; % 规则格式: IF e IS NegBig AND de IS ... THEN Kp IS ..., Ki IS ..., Kd IS ...
    % 更多规则...
];

% 添加规则到FIS
fis = addRule(fis, ruleList);

% 查看FIS结构
showfis(fis)

% 可以将此FIS导入到Simulink中的Fuzzy Logic Controller模块

这段代码只是一个起点,你需要根据具体需求调整模糊系统的参数和规则。对于完整的流程报告和详细的实现细节,建议查阅相关的技术文献或教程。

为了完整体验模糊PID控制的优势,你还需要对特定应用进行深入分析,以确定最佳的模糊规则集和隶属函数形状。希望这个概述对你有所帮助!如果需要进一步的帮助,请随时提问。
在这里插入图片描述
为了帮助你更好地理解如何在MATLAB/Simulink中实现模糊PID控制,我将提供一个详细的示例代码和步骤。这个示例包括创建模糊逻辑系统、设置PID控制器以及在Simulink中进行仿真。

1. 创建模糊逻辑系统

首先,我们需要使用MATLAB的Fuzzy Logic Toolbox来创建模糊逻辑系统。

% 创建一个新的模糊推理系统
fis = mamfis('Name','FuzzyPID');

% 添加输入变量(误差e和误差变化率ec)
fis = addInput(fis, [-3 3], 'Name', 'e');
fis = addInput(fis, [-3 3], 'Name', 'ec');

% 添加输出变量(Kp, Ki, Kd)
fis = addOutput(fis, [0 1], 'Name', 'Kp');
fis = addOutput(fis, [0 0.5], 'Name', 'Ki');
fis = addOutput(fis, [0 0.5], 'Name', 'Kd');

% 设置隶属函数
% 输入变量 e
fis = addMF(fis, 'e', 'trimf', [-4 -3 -2], 'Name', 'NB');
fis = addMF(fis, 'e', 'trimf', [-3 -2 -1], 'Name', 'NM');
fis = addMF(fis, 'e', 'trimf', [-2 -1 0], 'Name', 'NS');
fis = addMF(fis, 'e', 'trimf', [-1 0 1], 'Name', 'Z');
fis = addMF(fis, 'e', 'trimf', [0 1 2], 'Name', 'PS');
fis = addMF(fis, 'e', 'trimf', [1 2 3], 'Name', 'PM');
fis = addMF(fis, 'e', 'trimf', [2 3 4], 'Name', 'PB');

% 输入变量 ec
fis = addMF(fis, 'ec', 'trimf', [-4 -3 -2], 'Name', 'NB');
fis = addMF(fis, 'ec', 'trimf', [-3 -2 -1], 'Name', 'NM');
fis = addMF(fis, 'ec', 'trimf', [-2 -1 0], 'Name', 'NS');
fis = addMF(fis, 'ec', 'trimf', [-1 0 1], 'Name', 'Z');
fis = addMF(fis, 'ec', 'trimf', [0 1 2], 'Name', 'PS');
fis = addMF(fis, 'ec', 'trimf', [1 2 3], 'Name', 'PM');
fis = addMF(fis, 'ec', 'trimf', [2 3 4], 'Name', 'PB');

% 输出变量 Kp
fis = addMF(fis, 'Kp', 'trimf', [0 0.1 0.2], 'Name', 'Low');
fis = addMF(fis, 'Kp', 'trimf', [0.1 0.2 0.3], 'Name', 'Medium');
fis = addMF(fis, 'Kp', 'trimf', [0.2 0.3 0.4], 'Name', 'High');

% 输出变量 Ki
fis = addMF(fis, 'Ki', 'trimf', [0 0.05 0.1], 'Name', 'Low');
fis = addMF(fis, 'Ki', 'trimf', [0.05 0.1 0.15], 'Name', 'Medium');
fis = addMF(fis, 'Ki', 'trimf', [0.1 0.15 0.2], 'Name', 'High');

% 输出变量 Kd
fis = addMF(fis, 'Kd', 'trimf', [0 0.05 0.1], 'Name', 'Low');
fis = addMF(fis, 'Kd', 'trimf', [0.05 0.1 0.15], 'Name', 'Medium');
fis = addMF(fis, 'Kd', 'trimf', [0.1 0.15 0.2], 'Name', 'High');

% 定义规则
ruleList = [
    1 1 1 1 1; % IF e IS NB AND ec IS NB THEN Kp IS Low, Ki IS Low, Kd IS Low
    1 1 2 1 2; % IF e IS NB AND ec IS NM THEN Kp IS Low, Ki IS Low, Kd IS Medium
    1 1 3 1 3; % IF e IS NB AND ec IS NS THEN Kp IS Low, Ki IS Medium, Kd IS High
    1 2 1 2 1; % IF e IS NM AND ec IS NB THEN Kp IS Medium, Ki IS Low, Kd IS Low
    1 2 2 2 2; % IF e IS NM AND ec IS NM THEN Kp IS Medium, Ki IS Medium, Kd IS Medium
    1 2 3 2 3; % IF e IS NM AND ec IS NS THEN Kp IS Medium, Ki IS Medium, Kd IS High
    1 3 1 3 1; % IF e IS NS AND ec IS NB THEN Kp IS High, Ki IS Low, Kd IS Low
    1 3 2 3 2; % IF e IS NS AND ec IS NM THEN Kp IS High, Ki IS Medium, Kd IS Medium
    1 3 3 3 3; % IF e IS NS AND ec IS NS THEN Kp IS High, Ki IS High, Kd IS High
];

% 添加规则到FIS
fis = addRule(fis, ruleList);

% 查看FIS结构
showfis(fis)

2. 在Simulink中构建模型

接下来,在Simulink中构建一个包含模糊PID控制器的模型。

步骤:
  1. 打开MATLAB并启动Simulink。
  2. 创建一个新的Simulink模型。
  3. 添加以下模块:
    • Step:作为输入信号。
    • Transfer Function:代表被控对象(例如一个二阶系统)。
    • PID Controller:用于调节输出。
    • Fuzzy Logic Controller:用于调整PID参数。
    • Scope:查看响应曲线。
示例模型:
% 创建一个新的Simulink模型
model = 'FuzzyPIDModel';
open_system(model)

% 添加模块
add_block('simulink/Sources/Step', model + '/Step')
add_block('simulink/Commonly Used Blocks/Transfer Fcn', model + '/TransferFcn')
add_block('simulink/Discontinuities/PID Controller', model + '/PIDController')
add_block('fuzzy/Fuzzy Logic Controller', model + '/FuzzyLogicController')
add_block('simulink/Sinks/Scope', model + '/Scope')

% 连接模块
set_param(model + '/Step', 'OutPort', '1')
set_param(model + '/TransferFcn', 'InPort', '1')
set_param(model + '/PIDController', 'InPort', '1')
set_param(model + '/FuzzyLogicController', 'InPort', '1')
set_param(model + '/Scope', 'InPort', '1')

% 设置参数
set_param(model + '/Step', 'Time', '0')
set_param(model + '/Step', 'Amplitude', '1')
set_param(model + '/TransferFcn', 'Numerator', '[1]')
set_param(model + '/TransferFcn', 'Denominator', '[1 0.5 1]')
set_param(model + '/PIDController', 'P', '1')
set_param(model + '/PIDController', 'I', '0.1')
set_param(model + '/PIDController', 'D', '0.01')

% 设置模糊逻辑控制器参数
set_param(model + '/FuzzyLogicController', 'SystemName', 'FuzzyPID')

% 运行仿真
sim(model)

3. 运行仿真

运行上述代码后,Simulink会打开并显示模型。你可以通过点击“Run”按钮来运行仿真,并在“Scope”模块中观察系统的响应。

在这里插入图片描述
为了帮助你更好地理解如何在MATLAB/Simulink中实现模糊PID控制,我将提供一个详细的示例代码和步骤。这个示例包括创建模糊逻辑系统、设置PID控制器以及在Simulink中进行仿真。

1. 创建模糊逻辑系统

首先,我们需要使用MATLAB的Fuzzy Logic Toolbox来创建模糊逻辑系统。

% 创建一个新的模糊推理系统
fis = mamfis('Name','FuzzyPID');

% 添加输入变量(误差e和误差变化率ec)
fis = addInput(fis, [-3 3], 'Name', 'e');
fis = addInput(fis, [-3 3], 'Name', 'ec');

% 添加输出变量(Kp, Ki, Kd)
fis = addOutput(fis, [0 1], 'Name', 'Kp');
fis = addOutput(fis, [0 0.5], 'Name', 'Ki');
fis = addOutput(fis, [0 0.5], 'Name', 'Kd');

% 设置隶属函数
% 输入变量 e
fis = addMF(fis, 'e', 'trimf', [-4 -3 -2], 'Name', 'NB');
fis = addMF(fis, 'e', 'trimf', [-3 -2 -1], 'Name', 'NM');
fis = addMF(fis, 'e', 'trimf', [-2 -1 0], 'Name', 'NS');
fis = addMF(fis, 'e', 'trimf', [-1 0 1], 'Name', 'Z');
fis = addMF(fis, 'e', 'trimf', [0 1 2], 'Name', 'PS');
fis = addMF(fis, 'e', 'trimf', [1 2 3], 'Name', 'PM');
fis = addMF(fis, 'e', 'trimf', [2 3 4], 'Name', 'PB');

% 输入变量 ec
fis = addMF(fis, 'ec', 'trimf', [-4 -3 -2], 'Name', 'NB');
fis = addMF(fis, 'ec', 'trimf', [-3 -2 -1], 'Name', 'NM');
fis = addMF(fis, 'ec', 'trimf', [-2 -1 0], 'Name', 'NS');
fis = addMF(fis, 'ec', 'trimf', [-1 0 1], 'Name', 'Z');
fis = addMF(fis, 'ec', 'trimf', [0 1 2], 'Name', 'PS');
fis = addMF(fis, 'ec', 'trimf', [1 2 3], 'Name', 'PM');
fis = addMF(fis, 'ec', 'trimf', [2 3 4], 'Name', 'PB');

% 输出变量 Kp
fis = addMF(fis, 'Kp', 'trimf', [0 0.1 0.2], 'Name', 'Low');
fis = addMF(fis, 'Kp', 'trimf', [0.1 0.2 0.3], 'Name', 'Medium');
fis = addMF(fis, 'Kp', 'trimf', [0.2 0.3 0.4], 'Name', 'High');

% 输出变量 Ki
fis = addMF(fis, 'Ki', 'trimf', [0 0.05 0.1], 'Name', 'Low');
fis = addMF(fis, 'Ki', 'trimf', [0.05 0.1 0.15], 'Name', 'Medium');
fis = addMF(fis, 'Ki', 'trimf', [0.1 0.15 0.2], 'Name', 'High');

% 输出变量 Kd
fis = addMF(fis, 'Kd', 'trimf', [0 0.05 0.1], 'Name', 'Low');
fis = addMF(fis, 'Kd', 'trimf', [0.05 0.1 0.15], 'Name', 'Medium');
fis = addMF(fis, 'Kd', 'trimf', [0.1 0.15 0.2], 'Name', 'High');

% 定义规则
ruleList = [
    1 1 1 1 1; % IF e IS NB AND ec IS NB THEN Kp IS Low, Ki IS Low, Kd IS Low
    1 1 2 1 2; % IF e IS NB AND ec IS NM THEN Kp IS Low, Ki IS Low, Kd IS Medium
    1 1 3 1 3; % IF e IS NB AND ec IS NS THEN Kp IS Low, Ki IS Medium, Kd IS High
    1 2 1 2 1; % IF e IS NM AND ec IS NB THEN Kp IS Medium, Ki IS Low, Kd IS Low
    1 2 2 2 2; % IF e IS NM AND ec IS NM THEN Kp IS Medium, Ki IS Medium, Kd IS Medium
    1 2 3 2 3; % IF e IS NM AND ec IS NS THEN Kp IS Medium, Ki IS Medium, Kd IS High
    1 3 1 3 1; % IF e IS NS AND ec IS NB THEN Kp IS High, Ki IS Low, Kd IS Low
    1 3 2 3 2; % IF e IS NS AND ec IS NM THEN Kp IS High, Ki IS Medium, Kd IS Medium
    1 3 3 3 3; % IF e IS NS AND ec IS NS THEN Kp IS High, Ki IS High, Kd IS High
];

% 添加规则到FIS
fis = addRule(fis, ruleList);

% 查看FIS结构
showfis(fis)

% 保存模糊系统
saveas(fis, 'FuzzyPID.fis')

2. 在Simulink中构建模型

接下来,在Simulink中构建一个包含模糊PID控制器的模型。

步骤:
  1. 打开MATLAB并启动Simulink。
  2. 创建一个新的Simulink模型。
  3. 添加以下模块:
    • Step:作为输入信号。
    • Transfer Function:代表被控对象(例如一个二阶系统)。
    • PID Controller:用于调节输出。
    • Fuzzy Logic Controller:用于调整PID参数。
    • Scope:查看响应曲线。
示例模型:
% 创建一个新的Simulink模型
model = 'FuzzyPIDModel';
open_system(model)

% 添加模块
add_block('simulink/Sources/Step', model + '/Step')
add_block('simulink/Commonly Used Blocks/Transfer Fcn', model + '/TransferFcn')
add_block('simulink/Discontinuities/PID Controller', model + '/PIDController')
add_block('fuzzy/Fuzzy Logic Controller', model + '/FuzzyLogicController')
add_block('simulink/Sinks/Scope', model + '/Scope')

% 连接模块
set_param(model + '/Step', 'OutPort', '1')
set_param(model + '/TransferFcn', 'InPort', '1')
set_param(model + '/PIDController', 'InPort', '1')
set_param(model + '/FuzzyLogicController', 'InPort', '1')
set_param(model + '/Scope', 'InPort', '1')

% 设置参数
set_param(model + '/Step', 'Time', '0')
set_param(model + '/Step', 'Amplitude', '1')
set_param(model + '/TransferFcn', 'Numerator', '[1]')
set_param(model + '/TransferFcn', 'Denominator', '[1 0.5 1]')
set_param(model + '/PIDController', 'P', '1')
set_param(model + '/PIDController', 'I', '0.1')
set_param(model + '/PIDController', 'D', '0.01')

% 设置模糊逻辑控制器参数
set_param(model + '/FuzzyLogicController', 'SystemName', 'FuzzyPID')

% 运行仿真
sim(model)

3. 运行仿真

运行上述代码后,Simulink会打开并显示模型。你可以通过点击“Run”按钮来运行仿真,并在“Scope”模块中观察系统的响应。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值