引言——
就在最近这一两年,大型语言模型(LLMs)已经彻底颠覆了人们对于人工智能(AI)领域的看法。从增强自然语言处理(NLP)的能力到推动机器学习(ML)的新应用,它们已成为推动技术创新的关键力量。这些模型通过处理巨大的数据集来学习语言的复杂性、语境和细微差别,使得机器能够执行诸如语言翻译、内容创作、情感分析等高级任务,甚至在图像识别和生物医药研究等领域展现出前所未有的潜力。随着技术的飞速进步,我们见证了模型规模的指数级增长,这带来了更高的预测性能和更广泛的应用范围,标志着AI技术进入了一个全新的、更加智能化的时代。
然而,随着模型规模的增加,如何在资源受限的环境中运行这些高性能模型成为了一个挑战。边缘计算设备,如Nvidia Jetson系列,提供了一种在接近数据源的地方进行高效计算的方法,它们能够支持在不依赖云中心的情况下进行实时数据处理和决策。这为大模型的部署提供了新的机遇,尤其是在需要快速响应和处理能力的应用场景中,如自动驾驶、远程监控和智能城市。
然而,边缘设备的计算和存储资源有限,这就要求开发者对模型进行优化,以适应这些约束,同时保持模型的性能和准确性。正是基于这样的背景,米文着手进行了一项前所未有的评测工作,目的是为了深入理解和展示在Nvidia Jetson这样的边缘计算设备上运行各种主流大模型的性能。通过这些评测,我们希望揭示哪些模型能够在Jetson平台上有效运行,以及它们在运行时的性能表现,从而为开发者和企业提供实用的指南