1.简单选择排序
每一趟从i后面选出最小的与i交换;
void SelectSort(ElemType A[],int n){
for(i=0;i<n-1;i++){
min=i;
//在A[i...n-1]中选择最小元素
for(j=i+1;j<n;j++)
if(A[j]<A[min])
min=j;
//与第i元素交换
if(min!=i)
swap(A[i],A[min]);
}
}
2.堆排序(LEETCODE)
堆排序是一种树形选择排序方法,在排序过程中,将L[1…n]看成一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲与孩子结点之间关系,找出最大(小)元素;
87
/ \
45 78 [87,45,78,32,17,65,53,09]
/ \ / \
32 17 65 53
/ #大跟对示意图
09 #n个结点,最后一个结点为第n/2结点的子孩子
void BuildMaxHeap(EmelType A[],int len){
//从i=[n/2]~1,反复调整堆
for(int i=len/2;i>0;i--)
AdjustDown(A,i,len);
}
//将元素k向下调整,一路找出左右子树最大值,若小与A[0]则替掉父节点
void AdjustDown(ElemType A[],int k,int len){
A[0]=A[K]; //暂存
//一路沿较大子结点向下
for(i=2*k;i<=len;i*=2){
if(i<len&&A[i]<A[i+1]) i++; //2*i到左子树,找出左右子树较大值
if(A[0]>=A[i]) break; //左右子树都没自己大,直接返回,因为是从下向上调整的,所以左右子树本身就是大根堆
else{
A[k]=A[i]; //将A[i]调整到父节点,因为每次都是跟A[0]比较,所以相当于A[i]和A[0]互换
k=i; //修改k值,这样到下层才能继续将结点调整上去
}
}
A[k]=A[0]; //最终位置
}
void HeapSort(ElemType A[],int len){
BuildMaxHeap(A,len);
for(i=len;i>1;i--){ //从堆底开始
Swap(A[i],A[1]); //交换堆顶和堆顶
//A[0]用于暂存A[K],实际的heap从1开始
AdjustDown(A,1,i-1); //因为只交换了堆顶,所以只用把剩下i-1个元素整理成堆
}
}