选择排序

1.简单选择排序
每一趟从i后面选出最小的与i交换;

void SelectSort(ElemType A[],int n){
	for(i=0;i<n-1;i++){
		min=i;
		//在A[i...n-1]中选择最小元素
		for(j=i+1;j<n;j++)
			if(A[j]<A[min])
				min=j;
		//与第i元素交换
		if(min!=i)
			swap(A[i],A[min]);
	}
}

2.堆排序(LEETCODE)
堆排序是一种树形选择排序方法,在排序过程中,将L[1…n]看成一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲与孩子结点之间关系,找出最大(小)元素;

			  87                 
	       /      \
	     45        78					[87,45,78,32,17,65,53,09]
	    /  \      /  \
	  32    17  65    53 
	 /			              #大跟对示意图
   09                         #n个结点,最后一个结点为第n/2结点的子孩子
void BuildMaxHeap(EmelType A[],int len){
	//从i=[n/2]~1,反复调整堆
	for(int i=len/2;i>0;i--)
		AdjustDown(A,i,len);			
}

//将元素k向下调整,一路找出左右子树最大值,若小与A[0]则替掉父节点
void AdjustDown(ElemType A[],int k,int len){
	A[0]=A[K];							//暂存
	//一路沿较大子结点向下
	for(i=2*k;i<=len;i*=2){						
		if(i<len&&A[i]<A[i+1]) i++;		//2*i到左子树,找出左右子树较大值		
		if(A[0]>=A[i]) break;			//左右子树都没自己大,直接返回,因为是从下向上调整的,所以左右子树本身就是大根堆
		else{
			A[k]=A[i];					//将A[i]调整到父节点,因为每次都是跟A[0]比较,所以相当于A[i]和A[0]互换
			k=i;						//修改k值,这样到下层才能继续将结点调整上去
		}
	}
	A[k]=A[0];							//最终位置
}

void HeapSort(ElemType A[],int len){
	BuildMaxHeap(A,len);
	for(i=len;i>1;i--){				//从堆底开始
		Swap(A[i],A[1]);			//交换堆顶和堆顶
		//A[0]用于暂存A[K],实际的heap从1开始
		AdjustDown(A,1,i-1);		//因为只交换了堆顶,所以只用把剩下i-1个元素整理成堆
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值