【路径规划】基于matlab狮群算法栅格地图机器人最短路径规划【含Matlab源码 2863期】

💥💥💥💥💞💞💞💞💞💞欢迎来到凤凰科研社博客之家💞💞💞💞💞💞💥💥💥💥
在这里插入图片描述
✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码 论文复现 程序定制 期刊写作 科研合作 扫描文章底部QQ二维码。
🍎个人主页:凤凰科研社
🏆代码获取方式:扫描文章底部QQ二维码

⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
Matlab路径规划(凤凰科研社版)

⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!

⛄一、狮群算法及栅格地图简介

1 狮群算法
狮群算法(Lion Swarm Optimization, LSO)是一种群智能优化算法,基于狮群中狮王、母狮和幼狮的自然分工,模拟了狮群的协作捕猎行为。狮群算法将狮群分为三个部分:狮王、母狮和幼狮。狮王是具有最佳适应度值的个体,母狮和狮王合作进行捕猎,而幼狮则跟随狮王和母狮进行活动。狮群算法中,不同种类的狮子有不同的位置更新方式,遵循自然界生物的竞争法则。狮王守护领土,优先享用食物,母狮合作捕猎,而幼狮则分为学习捕猎、饥饿进食和成年被驱逐等状态。算法通过多样化的位置更新方式,保证了算法的快速收敛,不易陷入局部最优。狮群算法已经被应用于多个领域,如核极限学习机分类算法、核极限学习机回归预测、SVM数据分类和BP神经网络等。

2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
在这里插入图片描述
10乘10的静态环境地图代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1))         %设置障碍物的左下角点的x,y坐标
    for(j=1:n(2))
        if(map(i,j)==1)
            p(r,1)=j-1;
            p(r,2)=i-1;
            fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
                 [p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
            r=r+1;
            hold on
        end
    end
end
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)
    [row,col] = ind2sub([n(2),n(1)],i);
    text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square

建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。

map=[0 0 0 1 0 0 1 0 0 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 1 0 0 0 1 1 0 0;
     0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 1 0 0 1 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 0 1 0 0 0 0 0 0;
     1 1 1 0 0 0 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;];
     DrawMap(map);         %得到环境地图

2.4 栅格地图中障碍栅格处路径约束
移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当
移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束
条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对
角式移动方式。
在这里插入图片描述
在这里插入图片描述
约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格
设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:
代码:

%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵  % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))
    for(z=1:n(2))
       if(map(j,z)==1)
          if(j==1)                  %若障碍物在第一行
             if(z==1)               %若障碍物为第一行的第一个
                W(j+1,j+n(2)*j)=Inf;
                W(j+n(2)*j,j+1)=Inf;
             else
                if(z==n(2))         %若障碍物为第一行的最后一个
                   W(n(2)-1,n(2)+n(1)*j)=Inf;
                   W(n(2)+n(1)*j,n(2)-1)=Inf;
                else                %若障碍物为第一行的其他
                    W(z-1,z+j*n(2))=Inf;
                    W(z+j*n(2),z-1)=Inf;
                    W(z+1,z+j*n(2))=Inf;
                    W(z+j*n(2),z+1)=Inf;
                end
             end
          end
          if(j==n(1))               %若障碍物在最后一行
             if(z==1)               %若障碍物为最后一行的第一个
                W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;
                W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;
             else
             if(z==n(2))            %若障碍物为最后一行的最后一个
                W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;
                W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;
             else                   %若障碍物为最后一行的其他
                W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;
                W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;
                W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;
                W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;
             end
             end
          end
          if(z==1)              
             if(j~=1&&j~=n(1))       %若障碍物在第一列非边缘位置 
                W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;
                W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;
                W(z+1+(j-1)*n(2),z+j*n(2))=Inf;
                W(z+j*n(2),z+1+(j-1)*n(2))=Inf;
             end
          end
         if(z==n(2))
            if(j~=1&&j~=n(1))         %若障碍物在最后一列非边缘位置 
               W((j+1)*n(2),j*n(2)-1)=Inf;
               W(j*n(2)-1,(j+1)*n(2))=Inf;
               W(j*n(2)-1,(j-1)*n(2))=Inf;
               W((j-1)*n(2),j*n(2)-1)=Inf;
            end
         end
         if(j~=1&&j~=n(1)&&z~=1&&z~=n(2))   %若障碍物在非边缘位置
            W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;
            W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;
            W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;
            W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;
            W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;
            W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;
            W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;
            W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;
         end
       end
     end
   end
end

2.5 栅格法案例
下面以Djkstra算法为例, 其实现如下:

map=[0 0 0 1 0 0 1 0 0 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 1 0 0 0 1 1 0 0;
     0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 1 0 0 1 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 0 1 0 0 0 0 0 0;
     1 1 1 0 0 0 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map);   %得到环境地图的邻接矩阵
W(W==0)=Inf;  %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map);   %得到栅格相应的x,y坐标
Plot(distance,x,y);   %画出路径


运行结果如下:
在这里插入图片描述
其中函数程序:
DrawMap(map) 详见建立栅格地图
W=G2D(map) ; 详见建立邻接矩阵
[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法
[x, y] =Get_xy(distance, path, map) ;
Plot(distance, x, y) ;

⛄二、部分源代码

clc
clear
close all
tic
%% 地图
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;
0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
%%
S = [1 1];
E = [20 20];
G0 = G;
G = G0(S(1):E(1),S(2):E(2));
[Xmax,dimensions] = size(G);
dimensions = dimensions - 2;
X_min = 1;
%% 参数设置
max_gen = 200; % 最大迭代次数
num_polution = 50; % 种群数量
fboj=@(x)fitness(x,G,X_min,Xmax);
[fit_global_best,global_best,final_goal]=LSO(num_polution,max_gen, X_min,Xmax,dimensions,fboj);
toc
%% 结果分析
global_best1 = round(global_best);
fit_global_best
figure(1)
plot(final_goal,‘b-’);
xlabel(‘迭代次数’)
ylabel(‘适应度值’)
title(‘狮群优化迭代曲线’)
route = [S(1) global_best1 E(1)];
path=generateContinuousRoute(route,G);
% path=shortenRoute(path);
path=GenerateSmoothPath(path,G);
path=GenerateSmoothPath(path,G);
figure(2)
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
n=20;
for i=1:20
for j=1:20
if G(i,j)==1
x1=j-1;y1=n-i;
x2=j;y2=n-i;
x3=j;y3=n-i+1;
x4=j-1;y4=n-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],‘r’);
hold on
else
x1=j-1;y1=n-i;
x2=j;y2=n-i;
x3=j;y3=n-i+1;
x4=j-1;y4=n-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);
hold on
end
end
end
hold on
xlabel(‘Environment 1’)
drawPath(path,G)
title(‘基于狮群优化算法实现栅格地图机器人路径规划’)

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]张晓慧, & 韩国栋. (2018). 基于改进黑猩猩算法的栅格地图机器人最短路径规划. 计算机工程与应用, 54(17), 196-201.
[2]J. Kennedy和R. C. Eberhart, “Particle Swarm Optimization,” in Proceedings of the IEEE International Conference on Neural Networks, 1995.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值