Week3天气图像识别

本次采用的数据集为网络上下载的天气图像数据集,。
本人电脑配置
Python 3.8.17
Pytorch 2.0
torchvision 0.15.2 + cpu

前期准备

1. 设置GPU/CPU

本次是在cpu上对网络进行训练和测试,同样需要先识别设备。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

2. 导入数据

下载数据到主目录的文件夹的weather_photos文件夹里,文件夹下为4类的子文件夹,每一个文件夹为一类,其中cloudy, rain, shine, sunrise的图片数量分别为300,215,253,357,共1125张图片。图片示例如下
在这里插入图片描述
在这里把每张图片resize到224*224,并对数据进行归一化。在划分训练集和测试集时比例为0.8:0.2。在对数据进行封装时依旧采用的是dataloader。

import os, PIL, random, pathlib
data_dir = 'weather_photos/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
print(classNames)
total_datadir = 'weather_photos/'
train_transforms = transforms.Compose([transforms.Resize([224,224]),
                                      transforms.ToTensor(),
                                      transforms.Normalize(
                                          mean=[0.485,0.456,0.406],
                                          std = [0.229, 0.224, 0.225])])
total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
print(total_data)
# split the data
train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
# load data
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset, 
                                      batch_size=batch_size,
                                      shuffle = True,
                                      num_workers=0)

构建网络模型

1. 搭建模型

构建含有四层卷积的卷积神经网络,其中用到了batch normalization的操作,BN层一般位于激活函数前,可以保证激活单元的非线性表达能力,缓解梯度消失问题。

# construct the CNN with batch normalization
class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

2. 可视化模型

利用torchinfo包查看模型的结构并计算模型每一层的参数量,显示出来的结果如下。

from torchinfo import summary
model = Model().to(device)
summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Network_bn                               --
├─Conv2d: 1-1                            912
├─BatchNorm2d: 1-2                       24
├─Conv2d: 1-3                            3,612
├─BatchNorm2d: 1-4                       24
├─MaxPool2d: 1-5                         --
├─Conv2d: 1-6                            7,224
├─BatchNorm2d: 1-7                       48
├─Conv2d: 1-8                            14,424
├─BatchNorm2d: 1-9                       48
├─Linear: 1-10                           240,004
=================================================================
Total params: 266,320
Trainable params: 266,320
Non-trainable params: 0
=================================================================

3. 编写训练函数

设置损失函数,这里采用的交叉熵损失函数,设置优化器为SGD优化,同时在其中加入了动量,也是为了防止过拟合。

# Train the model
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)    # the size of training set
    num_batches = len(dataloader)
    train_loss, train_acc = 0, 0
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        # calculating the prediction error
        pred = model(X)
        loss = loss_fn(pred, y)
        # backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # recording the loss and accuracy
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc /= size
    train_loss /= num_batches
    return train_acc, train_loss

4. 编写测试函数

当不进行训练时,停止梯度更新,节省计算内存消耗。

# Test the model
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_acc, test_loss = 0, 0
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            # calculate loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1)==target).type(torch.float).sum().item()
    test_acc /= size
    test_loss /= num_batches
    return test_acc, test_loss

5. 主函数

设置迭代epoch次数,这里设定为100,并记录训练误差、精度,测试误差、精度。同时为了保存模型,选取训练过程中测试集上精度最大的模型进行保存。

# Start to train
epochs = 50
train_loss, train_acc, test_loss, test_acc = [], [], [], []
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}%, Test_acc:{:.1f}%, Test_loss:{:.3f}%,')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

结果总结

由于图片数量是比较小的,本次训练结果没有那么理想,之后还需要再次查找一下原因。

在这里插入图片描述

更新

采用原博主的源代码,我又跑了一遍,发现是没有太大问题的,在20个epoch内,准确率至少可以达到90%,训练得到的误差曲线如下所示
在这里插入图片描述
由于没有达到93%, 我增加了网络通道数,使得之前网络的通道数增加一倍,最后输出965050的特征图大小,发现虽然精度有所上升,但训练过程不是太平稳,猜想原因可能是数据集太小导致数据出现过拟合。
在这里插入图片描述
呜呜呜,让chatgpt帮我分析了一下代码才发现是我忘记进行损失的回传了!!!这么低级的错误也能出现,下给出修改后的训练结果图,结果与原博主的应该相似。
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值