高分严选!挑战5天完成一篇GBD

Day 1!

小编来发起一轮新的挑战啦,想做的师弟师妹们可以一起操作起来。国庆后最忙的阶段快过去了,最近在科室里终于可以喘口气啦~
 
最近GBD的发文量剧增,今年到现在的发文量已经超过23年的啦,小编也打算来挑战一篇!
挑战5天完成一篇GBD数据库SCI!大家一起学习,一起冲锋,希望能多增加几篇!
 
今天的主要任务就是初步检索+确定目标期刊和文献。
 
关于GBD的介绍已经是老生常谈了,GBD数据库,是一个综合性的统计数据库。该数据库旨在提供全球、国家和地区级别的疾病负担数据,包括死亡率、患病率、伤残调整生命年等多种指标。GBD数据库提供了从1990年至今的健康相关数据,用于分析和比较不同人群、地区和时间段内的健康问题。
 
使用GBD数据库发表文章的常用方法如下:
1. 数据提取和筛选
2. 描述性分析、比较分析、风险因素分析
3. 预测模型的建立
 
操作步骤也和之前一样,首先我对“GBD”进行了检索,截至目前已经发文3300多篇了,势头很猛!
且发文的质量还是蛮不错滴,都是一二区的文章
然后我检索了“GBD and目标疾病”,还没有文章发过!赶紧冲~
我打算用更新的数据以及加上预测模型等方法来实现,那就这么决定啦!
在看文献的过程中发现了一篇用的方法都满足我需求的文章,且这个期刊也是我的目标杂志,影响因子、发文量、首次回复时间都很不错,而且所采用的方法我都已经掌握了,
那就以这个期刊和文献为目标啦!
目标文献是:10.7189/jogh.13.04120
目标期刊是:J Glob Health
 
让我们一起探索GBD数据库吧!冲冲冲~

 

Day 2-3!

新挑战继续进行~
第2天的主要任务:认识数据库+下载数据
 

这个数据库的优点就在于比较简单、方便,且任何一个可以在官网上下载的疾病,都可以跑出想要的图表,而不是像别的数据库,整理完数据后分析发现可能无相关性,所以GBD数据库可以使我们可以快速发文,疯狂冲锋冲锋~
 
我们在提取数据之前,首先得熟悉一下GBD的官网,注册自己的账号以及了解数据是怎么下载的。
 
其次我们需要评估所选目标文献的方法,它的table和figure是否换了数据集后仍可以复现。一切准备就绪后就可以开始下载啦!
 
不过最近的GBD数据下载并不顺利,如果将所有数据一起下载往往会失败,但我用了分割提取再合并的方法,还是可以在2天内完成的!库库一顿提取就完事~
 
GBD的优点就是下载的数据都是标准化的,不需要像NHANES一样还需要特别处理,所以下载得到的数据可以直接用来分析。
 
只要数据清晰了,后面的一切都好说,没什么复杂和困难的,重点就是选题和明确分析方法,这就是我花了很多的时间进行初步检索确定目标期刊、选题的意义。千万不要一来就闷头下载数据,很可能白费时间!
 
好啦,今天的分享就到这里啦,一起加油呀~

Day 4!

进度汇报:跑出目标图片和表格
 
数据已经下载完啦,现在要做的就是数据的可视化,根据目标文献跑出核心图片和表格。
 
GBD的代码比MR和NHANES都要复杂的多,往往一个小细节错误,就会造成不停的报错报错!
不过掌握我们的方法,可以万能的处理一切代码报错问题~
 
许多师弟师妹会问:GBD里就这几种疾病,我想做的都被别人做过了怎么办?这个问题其实很好解决,比如这篇文章用的是到2019年的数据,那么你完全可以用更新到2021年的数据来分析,并且加入一些新的方法,如预测模型等,还可以限制地区和国家,比如只关注亚洲人群或者中国。或者只关注青年人?中年人或者老年人?
 
根据我们提供的代码,稍作修改就跑完图片和表格啦!
这就是GBD文章的主要结果啦,下载好数据以后,后面的分析实际上是非常简单的,选题才是最重要、最费时间的,也是最容易浮躁滴,静下来,方向对了,就一定能出成果。
 
今日份挑战成功~大家的进展怎么样呀!

Day5!

进度汇报:完成文章写作+投稿
 
结果部分的核心表格和图片完成后,后面就是写作啦!根据我们的“框架写作法”,写作其实是坠简单的,前期挑战的NHANES、孟德尔以及Meta等,我们都能在1天之内挑战成功,GBD也不例外!掌握了以后,任何类型的文章都不在话下!
 
在正式写作前,我会先阅读几篇同类型同方法的文章,然后去仔细解读目标文献,对这个期刊的行文逻辑以及格式有了大致的了解后,便开始动手啦~
 
趁着周末,留可以留出一天完整的时间给写作,准备好零食和奶茶后就开始动手啦!意料之内,这次也在1天之内写完了初稿~
 
最后跟着目标期刊的投稿要求,
调整文章格式、加引用,
以及把图片和结果放进去就好啦!
准备投稿咯!
 
光速完成一篇GBD,挑战成功!!!

### GBD 数据库代码实现案例 #### 使用 Python 进行 GBD 数据处理和分析 为了展示如何使用编程语言来操作 GBD (Global Burden of Disease Study) 数据,下面提供了一个基于 Pandas 库的简单例子。这个例子展示了如何加载、清理以及初步探索 GBD 类型的数据。 ```python import pandas as pd # 假设有一个CSV文件包含了GBD样式的健康统计数据 data = pd.read_csv('gbd_data.csv') # 查看前几行数据以了解其结构 print(data.head()) # 清理缺失值 cleaned_data = data.dropna() # 统计不同年份的心脏病死亡人数 heart_disease_deaths_by_year = cleaned_data.groupby('Year')['Heart_Disease_Deaths'].sum() print(heart_disease_deaths_by_year) # 可视化心脏病死亡趋势图 import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) heart_disease_deaths_by_year.plot(kind='line', marker='o') plt.title('Trend of Heart Disease Deaths Over Years') plt.xlabel('Year') plt.ylabel('Number of Deaths') plt.grid(True) plt.show() ``` 上述代码片段说明了基本的操作流程,包括读取 CSV 文件中的数据[^1]、去除任何可能存在的空缺条目,并按年度汇总特定疾病(如心脏病)的相关统计信息。最后通过图表形式直观呈现这些数据随时间变化的趋势。 对于更复杂的场景,比如机器学习建模预测未来某类疾病的发病率,则可以考虑采用 Scikit-Learn 或 TensorFlow 等框架来进行进一步开发。不过这超出了当前讨论范围内的基础示例介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值