Practical Black-Box Attacks against Machine Learning

Papernot N, Mcdaniel P, Goodfellow I, et al. Practical Black-Box Attacks against Machine Learning[C]. computer and communications security, 2017: 506-519.

@article{papernot2017practical,
title={Practical Black-Box Attacks against Machine Learning},
author={Papernot, Nicolas and Mcdaniel, Patrick and Goodfellow, Ian and Jha, Somesh and Celik, Z Berkay and Swami, Ananthram},
pages={506–519},
year={2017}}

Adversarial samples 构造策略中的black-box策略. black-box attacks, 即不依赖所针对的神经网络 O O O的参数(像FGSM需要关于样本求导), 不依赖训练 O O O所需的样本.

主要内容

算法为:
在这里插入图片描述

在这里插入图片描述

策略如下, 我们现在仅有一个黑盒般的神经网络 O O O, 我们喂入一个样本 x x x就会有一个输出, 记 O ~ ( x ) \tilde{O}(x) O~(x)为对应的预测的类, 即
O ~ ( x ) = arg ⁡ max ⁡ j ∈ 0 , … , N O j ( x ) , \tilde{O}(x) = \arg \max_{j \in 0, \ldots, N} O_j(x), O~(x)=argj0,,NmaxOj(x),
其中 O j ( x ) O_j(x) Oj(x)是概率向量 O ( x ) O(x) O(x)的第 j j j个元素.

我们构造一个新的神经网络 S S S, 以期望训练 S S S使得 S S S O O O二者的分类边界近似. 因为没有训练样本, 一种想法是人工生成训练样本(随机生成是可以预料到的方法, 但是这种方法作者说不好).

Jacobian-based Dataset Augmentation

假设有一批最开始的样本(可以是找的少量训练样本, 或者随机生成的样本), 设为 S 0 S_0 S0, 将这批样本畏入 O O O获得对应的样本标签(虽然可能是误判, 我们的目的是拟合 O O O),
D ← { ( x , O ~ ( x ) ) : x ∈ S 0 } , D \leftarrow \{(x, \tilde{O}(x)):x \in S_0\}, D{(x,O~(x)):xS0},
再将这批数据喂入 S S S训练 S S S, 现在我们需要更新 S 0 S_0 S0:
S 1 ← { x + λ ⋅ s g n ( J F [ O ~ ( x ) ] : x ∈ S 0 ] } ∪ S 0 . S_1 \leftarrow \{x + \lambda \cdot \mathrm{sgn} (J_F[\tilde{O}(x)]: x \in S_0]\} \cup S_0. S1{x+λsgn(JF[O~(x)]:xS0]}S0.
其中 J F [ O ~ ( x ) ] J_F[\tilde{O}(x)] JF[O~(x)]表示 O ~ ( x ) \tilde{O}(x) O~(x)关于 x x x的导数(这个idea应该是中FGSM中来的, 比较Goodfellow是联合作者).

后续的数据的更新是类似的.

现在假设我们已经训练好了 S S S, 我们需要在 S S S的基础上构造adversarial samples, 这些作者直接借鉴了部分关于white-box的工作(FGSM等), 我们只需利用white-box attacks 去欺骗 S S S即可.

Note

  • 网络结构, 比如网络的层数, 训练时的epoch等等对结果的影响有限.
  • white-box 方法选择对结果的影响有限.
  • 该方法可以扩展到除DNN以外的机器学习上, 比如逻辑斯蒂回归(决策树似乎也可, 但是没找到怎么实现的方案).
  • 为了提高网络的稳定性, 我们可以在训练的时候加入adversarial samples, 但是作者发现, 最好是在 ϵ \epsilon ϵ(输入摄动)较大但有限的adversarial samples 上训练比较好.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值