An Introduction to Measure Theory and Probability

Luigi Ambrosio, Giuseppe Da Prato, Andrea Mennucci, An Introduction to Measure Theory and Probability.

Chapter 1 Measure spaces

Index:

  • ring/algebras P2
  • σ \sigma σ-algebras P3
  • Borel σ \sigma σ-algebras P3
  • σ \sigma σ-additive P4
  • ( X , E , μ ) (X,\mathscr{E},\mu) (X,E,μ) P7
  • finite, σ \sigma σ-finite P7
  • E μ \mathscr{E}_{\mu} Eμ, μ − \mu- μcompletion P8
  • π − \pi- πsystems P9
  • Dynkin-systems P10
  • Outer measure P11
  • S : = { ( a , b ] : a < b ∈ R } \mathscr{S}:=\{(a,b]:a<b \in \mathbb{R}\} S:={(a,b]:a<bR} P12
  • Lebesgue measure λ \lambda λ P12

P9页的Caratheodory定理是在环 E \mathscr{E} E的基础上建立的(实际上半环足以), 通过半环生成 σ \sigma σ域(通过 σ ( K ) = D ( K ) \sigma(\mathscr{K})=\mathscr{D}(\mathscr{K}) σ(K)=D(K)). 通过 E \mathscr{E} E构建可测集域(外测度, 扩张), 由于 σ ( E ) \sigma(\mathscr{E}) σ(E)也是可测集, 所以满足所需的可加性. 当定义在 E \mathscr{E} E的测度 μ \mu μ σ \sigma σ有限的时候(或者存在一个分割), 这个扩张是唯一的.

Chapter 2 Integration

Index:

  • Inverse image φ − 1 ( I ) \varphi^{-1}(I) φ1(I) P23
  • ( E , F ) (\mathscr{E}, \mathscr{F}) (E,F)-measureable P23
  • canonical representation of φ \varphi φ P25
    φ ( x ) = ∑ k − 1 n a k 1 A k , A k = φ − 1 ( { a k } ) . \varphi(x)=\sum_{k-1}^n a_k 1_{A_k}, A_k = \varphi^{-1}(\{a_k\}). φ(x)=k1nak1Ak,Ak=φ1({ak}).
  • repartition function P28
  • archimedean integral P30
  • μ \mu μ-integrable P32
  • μ \mu μ-uniformly integrable P37

什么是可测函数, 以及什么是 E \mathscr{E} E-可测函数是很重要的 (P24).
什么是 μ \mu μ-integrable也是很重要的(在 E \mathscr{E} E-可测函数定义的).
不同于我看到的一般的积分的定义, 这一节是从 repartition function 和 archimedean integral入手的, 特别是
∫ X φ d μ : = ∫ 0 ∞ μ ( { φ > t } ) d t , \int_X \varphi d\mu := \int_{0}^{\infty} \mu(\{\varphi > t\}) \mathrm{d}t, Xφdμ:=0μ({φ>t})dt,
的定义式非常之有趣.

Chapter 3 Spaces of integrable functions

Index:

  • L p L^p Lp, L p \mathcal{L}^p Lp P44
  • equivalence class φ ~ \tilde{\varphi} φ~
  • Legendre transform P45
  • μ \mu μ-essentially bounded P45
  • Jensen inequality P45
  • C b C_b Cb P54

首先需要注意的是, L p L^p Lp空间是定义在 μ \mu μ-integrable上的, 所以其针对值域为 ( R , B ( R ) ) (\mathbb{R},\mathscr{B}(\mathbb{R})) (R,B(R)).

Chapter 4 Hilbert spaces

Index:

  • Orthonormal system P63
  • Complete orthonormal system P64
  • Separable P64
  • pre-Hilbert space P57
  • Hilbert space (complete) P58

投影定理, 子空间或者凸闭集(条件和结论需要调整).

Chapter 5 Fourier series

Index:

  • “Heaviside” function P71
  • totally convergent P75

Chapter 6 Operations on measures

Index:

  • Measureable rectangle P79
  • sections, E x , E y E_x,E^y Ex,Ey P79
  • dimensional constant w n = L n ( B ( 0 , 1 ) ) w_n=\mathcal{L}^n(B(0,1)) wn=Ln(B(0,1)) p83
  • δ \delta δ-box P84
  • cylindrical set P86
  • concentrated set P92
  • singular measures P92
  • total variation P97
  • stieltjes integral P103
  • weak convergence P103
  • Tightness of measures P104
  • Fourier transform P108

这一章很重要!

Part1: Fubini-Tonelli

Part2: Lebesgue分解定理P92

Part3: Signed measures

Part4: F ( x ) : = μ ( ( − ∞ , x ] ) F(x):= \mu((-\infty,x]) F(x):=μ((,x]), P102, 弱收敛 lim ⁡ h → ∞ μ h ( − ∞ , x ] = μ ( ( − ∞ , x ] ) \lim_{h\rightarrow \infty}\mu_h(-\infty, x]=\mu((-\infty, x]) limhμh(,x]=μ((,x]) (除去可数多个点)

Part5: Fourier transform, 以及测度的Fourier transform (后面概率的表示函数有用), Levy定理P112.

Chapter 7 The fundamental theorem of the integral calculus

Index:

  • density points, rarefaction points P121
  • Heaviside function P121
  • Cantor-Vitali function P121
  • total variation P116

f ( x ) = f ( a ) + ∫ a x g ( t ) d t , f(x)=f(a)+\int_a^x g(t)\mathrm{d}t, f(x)=f(a)+axg(t)dt,
lim ⁡ r ↓ 0 1 ω n r n ∫ B r ( x ) ∣ f ( y ) − f ( x ) ∣ d y = 0. \lim_{r\downarrow0} \frac{1}{\omega_n r^n} \int_{B_r(x)} |f(y)-f(x)|\mathrm{d}y=0. r0limωnrn1Br(x)f(y)f(x)dy=0.

Chapter 8 Measurable transformations

Index:

  • differential P123
  • Jacobian determinant P125
  • diffeomorphism P125
  • critical set C F C_F CF P125

F # μ ( I ) : = μ ( F − 1 ( I ) ) F_\# \mu(I) := \mu(F^{-1}(I)) F#μ(I):=μ(F1(I))

有一个问题就是,我看其理论都是限制在非负函数上的, 但是个人感觉直接推广到可测函数上.
需要用到逆函数定理, 很有意思.

∫ F ( U ) φ ( y ) d y = ∫ U φ ( F ( x ) ) ∣ J F ∣ ( x ) d x . \int_{F(U)} \varphi(y) \mathrm{d}y = \int_{U} \varphi(F(x)) |JF|(x)\mathrm{d}x. F(U)φ(y)dy=Uφ(F(x))JF(x)dx.

Chapter 9 General concepts of Probability

Index:

  • elementary event P131
  • laws P131
  • Random variable P133
  • binomial law P138
  • Characteristic function P139

注意:
E P ( X ) : = ∫ Ω X ( ω ) d P ( ω ) , \mathbb{E}_{\mathbb{P}}(X):= \int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega), EP(X):=ΩX(ω)dP(ω),
是限制在 P \mathbb{P} P-integrable之上的.

Chapter 10 Conditional probability and independece

Index:

  • Independece of two families P147
  • σ \sigma σ-algebra generated by a random variable P147
  • Independence of two random variables P147
  • Independence of familes A i \mathscr{A}_i Ai P149
  • σ ( X ) : = { { X ∈ A } : A ∈ E } \sigma(X):= \{\{X \in A\}:A \in \mathscr{E}\} σ(X):={{XA}:AE} P149
  • σ ( { X } i ∈ I ) \sigma(\{X\}_{i \in I}) σ({X}iI) P152
  • independent and identically distributed P155

由条件概率衍生到独立性, 随机变量的独立性有几个等价条件P147, P150.
需要区分联合分布的概率和 μ × v \mu\times v μ×v的区别 (当独立时才等价).

Chapter 11 Convergence of random variables

测度概率
一致收敛一致收敛
几乎一致收敛几乎一致收敛
几乎处处收敛几乎处处收敛
依测度收敛依概率收敛
L p L^p Lp收敛 lim ⁡ n → ∞ E ( ⋅ ) p = 0 \lim_{n\rightarrow \infty}\mathbb{E}(\cdot)^p=0 limnE()p=0
弱收敛依分布收敛

(几乎)一致收敛可以得到几乎处处和依测度收敛.
几乎处处在测度有限的情况下可以推几乎一致收敛, 从而得到依测度收敛.
依测度收敛必存在一个几乎处出收敛的子列.
L p L^p Lp收敛一定能够有依测度收敛.

特别地, 依概率收敛有依分布收敛, 只有当依分布收敛到常数 c c c的时候, 才能推依概率收敛到 c c c(对应的有限测度).

Chapter 12 Sequences of independent variables

Index:

  • terminal σ \sigma σ-algerba ∩ n B n \cap_{n} \mathscr{B}_n nBn P172
  • empirical distribution function P180

Kolmogorov’s dichotomy P173 很有趣.

大数定律再到中心极限定理.

Chapter 13 Stationary sequences and elements of ergodic theory

Index:

  • stationary sequences P186
  • measure-preserving transformation P188
  • T-invariant P189
  • Ergodic maps P189
  • conjugate maps P190

平稳序列的定义需要注意, 另外一些理论有趣却渐渐脱离了掌控, 有点摸不着头脑.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值