不等式

文章目录

符号说明

矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} ARm×n
∥ A ∥ \|A\| A:矩阵 A A A的谱范数
∥ A ∥ ∗ \|A\|_* A: 矩阵 A A A的核范数
∥ A ∥ F \|A\|_F AF: 矩阵 A A A的F范数
r a n k ( ) \mathrm{rank}() rank()表示矩阵的秩。

[Jensen’s inequality]

f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x + (1-\theta)y) \le \theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)

如果 f : R n → R f:\mathbb{R}^n \rightarrow \mathbb{R} f:RnR为凸函数, θ ∈ [ 0 , 1 ] \theta \in [0, 1] θ[0,1] x , y ∈ d o m f x,y\in \mathrm{dom}f x,ydomf那么:
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x + (1-\theta)y) \le \theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)
实际上,上述为凸函数的定义,为比较一般的Jensen’s inequality。

f ( θ 1 x 1 + … + θ k x k ) ≤ θ 1 f ( x 1 ) + … + θ k f ( x k ) f(\theta_1 x_1 + \ldots + \theta_k x_k) \le \theta_1 f(x_1)+\ldots+ \theta_k f(x_k) f(θ1x1++θkxk)θ1f(x1)++θkf(xk)

如果 f : R n → R f:\mathbb{R}^n \rightarrow \mathbb{R} f:RnR为凸函数, θ i ∈ [ 0 , 1 ] , ∑ i = 1 k θ i = 1 \theta_i \in [0, 1], \sum \limits_{i=1}^k \theta_i =1 θi[0,1],i=1kθi=1 x 1 , … , x k ∈ d o m f x_1, \ldots, x_k \in \mathrm{dom}f x1,,xkdomf那么:
f ( θ 1 x 1 + … + θ k x k ) ≤ θ 1 f ( x 1 ) + … + θ k f ( x k ) f(\theta_1 x_1 + \ldots + \theta_k x_k) \le \theta_1 f(x_1)+\ldots+ \theta_k f(x_k) f(θ1x1++θkxk)θ1f(x1)++θkf(xk)
证:假设 θ 1 = 0 或 者 1 \theta_1 = 0 或者 1 θ1=01时,不等式是一定成立的,所以假设 θ 1 ∈ ( 0 , 1 ) \theta_1 \in (0,1) θ1(0,1)
θ = θ 1 , θ ′ = 1 − θ \theta = \theta_1, \theta' = 1-\theta θ=θ1,θ=1θ, x = x 1 , θ ′ y = θ 2 x 2 + … + θ k x k x = x_1, \theta'y = \theta_2 x_2 + \ldots + \theta_k x_k x=x1,θy=θ2x2++θkxk,根据凸函数的定义可得:
f ( θ x + θ ′ y ) ≤ θ f ( x ) + θ ′ f ( y ) f(\theta x + \theta' y) \le \theta f(x) + \theta' f(y) f(θx+θy)θf(x)+θf(y)
∑ i = 2 k θ i / θ ′ = 1 \sum \limits_{i=2}^k \theta_i / \theta'=1 i=2kθi/θ=1,所以,同样满足条件,所以通过数学归纳法即可证明上述等式。

f ( ∫ S p ( x ) x   d x ) ≤ ∫ S f ( x ) p ( x ) d x f(\int_S p(x)x \: \mathrm{d}x) \le \int_S f(x)p(x) \mathrm{d}x f(Sp(x)xdx)Sf(x)p(x)dx

如果在 S ⊆ d o m f S \subseteq \mathrm{dom} f Sdomf上, p ( x ) ≥ 0 p(x) \ge 0 p(x)0,且 ∫ S p ( x )   d x = 1 \int_S p(x) \: \mathrm{d}x=1 Sp(x)dx=1,则当相应的积分存在时:
f ( ∫ S p ( x ) x   d x ) ≤ ∫ S f ( x ) p ( x ) d x f(\int_S p(x)x \: \mathrm{d}x) \le \int_S f(x)p(x) \mathrm{d}x f(Sp(x)xdx)Sf(x)p(x)dx

试证(注意,是试证):
θ i = p ( x i ) Δ x i , i = 1 , 2 , … , k \theta_i = p(x_i) \Delta x_i, i=1,2,\ldots,k θi=p(xi)Δxii=1,2,,k,且满足 ∑ i = 1 k θ i = 1 \sum \limits_{i=1}^k \theta_i =1 i=1kθi=1(这个性质至少在p(x)是连续函数的时候是能够满足的),那么根据第二形态Jensen’s inequality可以得到:
f ( ∑ i = 1 k p ( x i ) Δ x i x i ) ≤ ∑ i = 1 k p ( x i ) Δ x i f ( x i ) f(\sum \limits_{i=1}^k p(x_i)\Delta x_i x_i) \le \sum \limits_{i=1}^k p(x_i)\Delta x_i f(x_i) f(i=1kp(xi)Δxixi)i=1kp(xi)Δxif(xi)
max ⁡ ∣ Δ x i ∣ → 0 \max |\Delta x_i| \rightarrow 0 maxΔxi0即可得积分形式不等式(当然,里面含有一个极限和函数互换的东西,因为凸函数一定是连续函数,所以这个是可以互换的,应该没弄错)。

f ( E x ) ≤ E ( f ( x ) ) f(\mathrm{E}x) \le \mathrm{E}(f(x)) f(Ex)E(f(x))

如果 x x x是随机变量,事件 x ∈ d o m f x \in \mathrm{dom}f xdomf发生的概率为1,函数 f f f为凸函数,且相应的期望存在时:
f ( E x ) ≤ E ( f ( x ) ) f(\mathrm{E}x) \le \mathrm{E}(f(x)) f(Ex)E(f(x))
证:
S = d o m f S = domf S=domf,随机变量 x x x的概率密度函数为 p ( x ) p(x) p(x),则 ∫ S p ( x ) = 1 \int_S p(x)=1 Sp(x)=1,于是,根据积分形式的Jensen’s inequality即可得:
f ( E x ) ≤ E ( f ( x ) ) f(\mathrm{E}x) \le \mathrm{E}(f(x)) f(Ex)E(f(x))

[Young’s inequality] a b ≤ a p p + b q q ab \le \frac{a^p}{p} + \frac{b^q}{q} abpap+qbq

Young’s inequality-wiki

p , q ∈ [ 1 , + ∞ ) p,q \in [1, +\infty) p,q[1,+)且均为实数,满足:
1 p + 1 q = 1 \frac{1}{p} + \frac{1}{q} = 1 p1+q1=1
a , b > 0 a, b>0 a,b>0亦为实数,那么:
a b ≤ a p p + b q q ab \le \frac{a^p}{p} + \frac{b^q}{q} abpap+qbq

证1:

对于 x ∈ R + , α ∈ ( 0 , 1 ) x \in \mathbb{R}^+, \alpha \in (0, 1) xR+,α(0,1),有 x α ≤ 1 + α ( x − 1 ) x^{\alpha} \le 1 + \alpha (x-1) xα1+α(x1)(因为 x α x^{\alpha} xα为凹函数,而不等式右边是在点 ( 1 , 1 ) (1, 1) (1,1)的切线)。令 x = b / a , α = 1 / q x = b/a, \alpha = 1/q x=b/a,α=1/q ,可得:
a 1 / p b 1 / q ≤ a p + b q a^{1/p}b^{1/q} \le \frac{a}{p} + \frac{b}{q} a1/pb1/qpa+qb
a : = a p , b : = b q a:=a^p, b:=b^q a:=ap,b:=bq,代入即可得,另外 a , b = 0 a,b=0 a,b=0的时候不等式必成立,结果得证。

证2:
考察 O x y Oxy Oxy平面上由方程 y = x p − 1 y=x^{p-1} y=xp1所定义的曲线,它也可以表示为 x = y 1 p − 1 = y q − 1 x=y^{\frac{1}{p-1}}=y^{q-1} x=yp11=yq1,作积分得:
S 1 = ∫ 0 a y d x = ∫ 0 a x p − 1 d x = a p p S 2 = ∫ 0 b x d y = ∫ 0 a y q − 1 d y = b q q S_1 = \int_0^a y \mathrm{d}x = \int_0^a x^{p-1} \mathrm{d}x = \frac{a^p}{p} \\ S_2 = \int_0^b x \mathrm{d}y = \int_0^a y^{q-1} \mathrm{d}y = \frac{b^q}{q} S1=0aydx=0axp1dx=papS2=0bxdy=0ayq1dy=qbq
显然:
a b ≤ S 1 + S 2 = a p p + b q q ab \le S_1 + S_2 = \frac{a^p}{p} + \frac{b^q}{q} abS1+S2=pap+qbq
只有当 b q = a p b^q = a^p bq=ap的时候,不等式才得以成立,证毕。

[Holder’s inequality] ∥ x y ∥ 1 ≤ ∥ x ∥ p ∥ y ∥ q \|xy\|_1 \le \|x\|_p \|y\|_q xy1xpyq

Holder’s inequality-wiki

离散形式

p , q ∈ [ 1 , + ∞ ) p, q \in [1, +\infty) p,q[1,+),且 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1, x , y ∈ C n x, y \in C^{n} x,yCn,其中 C C C表示复数域,则:
∥ x y ∥ 1 = ∑ i = 1 n ∣ x i y i ∣ ≤ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ( ∑ i = 1 n ∣ y i ∣ q ) 1 q = ∥ x ∥ p ∥ y ∥ q \|xy\|_1 = \sum \limits_{i=1}^n |x_iy_i| \le (\sum \limits_{i=1}^n |x_i|^p)^{\frac{1}{p}}(\sum \limits_{i=1}^n |y_i|^q)^{\frac{1}{q}} = \|x\|_p \|y\|_q xy1=i=1nxiyi(i=1nxip)p1(i=1nyiq)q1=xpyq
注意, m × n m \times n m×n的矩阵可以看成是 m n mn mn维的向量。

证:

a k = ∣ x k ∣ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p , b k = ∣ y k ∣ ( ∑ i = 1 n ∣ y i ∣ q ) 1 q a_k = \frac{|x_k|}{(\sum \limits_{i=1}^{n} |x_i|^p)^{\frac{1}{p}}}, b_k = \frac{|y_k|}{(\sum \limits_{i=1}^{n} |y_i|^q)^{\frac{1}{q}}} ak=(i=1nxip)p1xk,bk=(i=1nyiq)q1yk
则有 ∑ k = 1 n a k p = 1 , ∑ k = 1 n b k q = 1 \sum \limits_{k=1}^n a_k^p = 1, \sum_{k=1}^n b_k^q = 1 k=1nakp=1,k=1nbkq=1,由杨不等式 a k b k ≤ a k p p + b k q q a_kb_k \le \frac{a_k^p}{p} + \frac{b_k^q}{q} akbkpakp+qbkq求和,得
∑ k = 1 n a k b k ≤ ∑ k = 1 n a k p p + ∑ k = 1 n b k q q = 1 p + 1 q = 1 \sum \limits_{k=1}^n a_k b_k \le \frac{\sum \limits_{k=1}^{n}a_k^p}{p} + \frac{\sum \limits_{k=1}^{n}b_k^q}{q} = \frac{1}{p} + \frac{1}{q}=1 k=1nakbkpk=1nakp+qk=1nbkq=p1+q1=1

∑ i = 1 n ∣ x i ∣ ∣ y i ∣ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ( ∑ i = 1 n ∣ y i ∣ q ) 1 q ≤ 1 \frac{\sum \limits_{i=1}^n |x_i||y_i|}{(\sum \limits_{i=1}^n |x_i|^p)^{\frac{1}{p}}(\sum \limits_{i=1}^n |y_i|^q)^{\frac{1}{q}}} \le1 (i=1nxip)p1(i=1nyiq)q1i=1nxiyi1
所以得证。
另外需要一提的是 n → + ∞ n \rightarrow + \infty n+,且右端俩式收敛,则这个式子也对于 n → + ∞ n \rightarrow +\infty n+也可成立。

积分形式

p , q ∈ [ 1 , + ∞ ) p, q \in [1, +\infty) p,q[1,+),且 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1, x ( t ) , y ( t ) , t ∈ [ t 0 , t 1 ] x(t), y(t), t\in [t_0, t_1] x(t),y(t),t[t0,t1],且
∫ t 0 t 1 ∣ x ( t ) y ( t ) ∣ d t ,   [ ∫ t 0 t 1 ∣ x ( t ) ∣ p d t ] 1 p ,   [ ∫ t 0 t 1 ∣ y ( t ) ∣ q d t ] 1 q \int_{t_0}^{t_1}|x(t)y(t)|\mathrm{d}t,\: [\int_{t_0}^{t_1}|x(t)|^p\mathrm{d}t]^{\frac{1}{p}}, \:[\int_{t_0}^{t_1}|y(t)|^q\mathrm{d}t]^{\frac{1}{q}} t0t1x(t)y(t)dt,[t0t1x(t)pdt]p1,[t0t1y(t)qdt]q1
均存在,则
∫ t 0 t 1 ∣ x ( t ) y ( t ) ∣ d t ≤ [ ∫ t 0 t 1 ∣ x ( t ) ∣ p d t ] 1 p [ ∫ t 0 t 1 ∣ y ( t ) ∣ q d t ] 1 q \int_{t_0}^{t_1}|x(t)y(t)|\mathrm{d}t \le [\int_{t_0}^{t_1}|x(t)|^p\mathrm{d}t]^{\frac{1}{p}} [\int_{t_0}^{t_1}|y(t)|^q\mathrm{d}t]^{\frac{1}{q}} t0t1x(t)y(t)dt[t0t1x(t)pdt]p1[t0t1y(t)qdt]q1

证:

a = ∣ x ( t ) ∣ [ ∫ t 0 t 1 ∣ x ( t ) ∣ p d t ] 1 p , b = ∣ y ( t ) ∣ [ ∫ t 0 t 1 ∣ y ( t ) ∣ q d t ] 1 q a = \frac{|x(t)|}{[\int_{t_0}^{t_1}|x(t)|^p\mathrm{d}t]^{\frac{1}{p}}}, \quad b = \frac{|y(t)|}{[\int_{t_0}^{t_1}|y(t)|^q\mathrm{d}t]^{\frac{1}{q}}} a=[t0t1x(t)pdt]p1x(t),b=[t0t1y(t)qdt]q1y(t)
则有 ∫ t 0 t 1 a p d t = 1 ,   ∫ t 0 t 1 b q d t = 1 \int_{t_0}^{t_1}a^p \mathrm{d}t=1, \: \int_{t_0}^{t_1}b^q \mathrm{d}t=1 t0t1apdt=1,t0t1bqdt=1,并由杨不等式 a b ≤ a p p + b q q ab\le \frac{a^p}{p} + \frac{b^q}{q} abpap+qbq并积分可得:
∫ t 0 t 1 a b d t ≤ 1 \int_{t_0}^{t_1}ab \mathrm{d}t \le 1 t0t1abdt1

∫ t 0 t 1 ∣ x ( t ) y ( t ) ∣ d t ≤ [ ∫ t 0 t 1 ∣ x ( t ) ∣ p d t ] 1 p [ ∫ t 0 t 1 ∣ y ( t ) ∣ q d t ] 1 q \int_{t_0}^{t_1}|x(t)y(t)|\mathrm{d}t \le [\int_{t_0}^{t_1}|x(t)|^p\mathrm{d}t]^{\frac{1}{p}} [\int_{t_0}^{t_1}|y(t)|^q\mathrm{d}t]^{\frac{1}{q}} t0t1x(t)y(t)dt[t0t1x(t)pdt]p1[t0t1y(t)qdt]q1
证毕。

[trace-nuclear] T r ( A T B ) ≤ ∥ A ∥ ∥ B ∥ ∗ \mathrm{Tr}(A^TB) \le \|A\|\|B\|_* Tr(ATB)AB

证明:
根据 ∥ B ∥ ∗ \|B\|_* B的对偶定义:
∥ B ∥ ∗ = sup ⁡ { T r ( A T B ) ∣ ∥ A ∥ ≤ 1 } = sup ⁡ { T r ( A T B ) ∣ ∥ A ∥ = 1 } ⇒ α ∥ B ∥ ∗ ≥ α T r ( ( A T B ) ) , ∥ A ∥ = 1 \|B\|_* = \sup \{\mathrm{Tr}(A^TB)| \|A\| \le 1\} = \sup \{\mathrm{Tr}(A^TB)| \|A\| = 1\} \\ \Rightarrow \alpha \|B\|_* \ge \alpha\mathrm{Tr}((A^TB)), \|A\| =1 B=sup{Tr(ATB)A1}=sup{Tr(ATB)A=1}αBαTr((ATB)),A=1
A : = α A A := \alpha A A:=αA代之,则 ∥ A ∥ = α \|A\| = \alpha A=α
∥ A ∥ ∥ B ∥ ∗ ≥ T r ( A T B ) \|A\|\|B\|_* \ge \mathrm{Tr}(A^TB) ABTr(ATB)
因为 B B B是任意的,所以不等式对任意的 A , B A,B A,B都成立(当然前提是能做矩阵的乘法).

[算术-几何平均不等式] a θ b 1 − θ ≤ θ a + ( 1 − θ ) b a^{\theta}b^{1-\theta} \le \theta a +(1-\theta)b aθb1θθa+(1θ)b

如果 a , b ≥ 0 a,b\ge 0 a,b0 θ ∈ [ 0 , 1 ] \theta \in [0, 1] θ[0,1],那么
a θ b 1 − θ ≤ θ a + ( 1 − θ ) b a^{\theta}b^{1-\theta} \le \theta a +(1-\theta)b aθb1θθa+(1θ)b
θ = 1 / 2 \theta = 1/2 θ=1/2时, a b ≤ ( a + b ) / 2 \sqrt{ab} \le (a+b)/2 ab (a+b)/2

证1:因为 − log ⁡ x -\log x logx为定义在 ( 0 , + ∞ ) (0, +\infty) (0,+)上的凸函数,根据[Jensen’s inequality]可得:
− log ⁡ ( θ a + ( 1 − θ ) b ) ≤ − θ log ⁡ ( a ) − ( 1 − θ ) log ⁡ ( b ) -\log (\theta a + (1-\theta)b) \le -\theta \log(a) -(1-\theta) \log(b) log(θa+(1θ)b)θlog(a)(1θ)log(b)
俩边取指数可得:
( θ a + ( 1 − θ ) b ) − 1 ≤ ( a θ b ( 1 − θ ) ) − 1 \big(\theta a+(1-\theta)b\big)^{-1} \le (a^{\theta}b^{(1-\theta)})^{-1} (θa+(1θ)b)1(aθb(1θ))1
所以
a θ b 1 − θ ≤ θ a + ( 1 − θ ) b a^{\theta}b^{1-\theta} \le \theta a +(1-\theta)b aθb1θθa+(1θ)b

证2:
根据[Young’s inequality]可得:
a b ≤ a p p + b q q ab \le \frac{a^p}{p} + \frac{b^q}{q} abpap+qbq
a = a θ , b = b 1 − θ a = a^{\theta}, b = b^{1-\theta} a=aθ,b=b1θ, p = 1 / θ , q = 1 / ( 1 − θ ) p = 1/\theta,q=1/(1-\theta) p=1/θ,q=1/(1θ) p , q p,q p,q满足条件,所以:
a θ b 1 − θ ≤ θ a + ( 1 − θ ) b a^{\theta}b^{1-\theta} \le \theta a +(1-\theta)b aθb1θθa+(1θ)b

[Gibb’s inequality] − ∑ i = 1 n p i log ⁡ p i ≤ − ∑ i = 1 n p i log ⁡ q i -\sum \limits_{i=1}^np_i \log p_i \le -\sum \limits_{i=1}^n p_i\log q_i i=1npilogpii=1npilogqi

假设 P = { p 1 , … , p n } , Q = { q 1 , … , q n } P=\{p_1, \ldots, p_n\}, Q=\{q_1, \ldots, q_n\} P={p1,,pn},Q={q1,,qn}分别为一个概率分布, 那么有下列不等式成立:
− ∑ i = 1 n p i log ⁡ p i ≤ − ∑ i = 1 n p i log ⁡ q i -\sum \limits_{i=1}^np_i \log p_i \le -\sum \limits_{i=1}^n p_i\log q_i i=1npilogpii=1npilogqi
等价于:
∑ i = 1 n p i log ⁡ p i ≥ ∑ i = 1 n p i log ⁡ q i \sum \limits_{i=1}^np_i \log p_i \ge \sum \limits_{i=1}^n p_i\log q_i i=1npilogpii=1npilogqi
亦等价于:
− ∑ i = 1 n p i log ⁡ p i q i ≤ 0 -\sum \limits_{i=1}^n p_i \log \frac{p_i}{q_i} \le 0 i=1npilogqipi0
当且仅当 p i = q i p_i=q_i pi=qi时等式成立.

这意味着是KL散度:
D ( P ∥ Q ) = − ∑ i = 1 n p i ln ⁡ q i p i ≥ 0 D(P\|Q)=-\sum_{i=1}^n p_i\ln \frac{q_i}{p_i} \ge 0 D(PQ)=i=1npilnpiqi0

wiki

证1:

因为 log ⁡ a = ln ⁡ a ln ⁡ 2 \log a = \frac{\ln a}{\ln 2} loga=ln2lna, 所以我们简单证明 ln ⁡ \ln ln的不等式即可.
I I I表示 p i > 0 p_i > 0 pi>0的指示集,又 ln ⁡ x ≤ x − 1 , x > 0 \ln x \le x-1, x>0 lnxx1,x>0, 故:
− ∑ i ∈ I p i ln ⁡ q i p i ≥ − ∑ i ∈ I p i ( q i p i − 1 ) = − ∑ i ∈ I q i + 1 ≥ 0 -\sum \limits_{i \in I} p_i \ln \frac{q_i}{p_i} \ge -\sum \limits_{i \in I} p_i (\frac{q_i}{p_i}-1) =-\sum \limits_{i \in I} q_i +1 \ge 0 iIpilnpiqiiIpi(piqi1)=iIqi+10
经过延拓 0 ln ⁡ 0 = 0 0\ln0=0 0ln0=0, 则上式成立, 又 x = 1 x=1 x=1的时候 ln ⁡ x = x − 1 \ln x = x-1 lnx=x1, 所以 p i = q i , i ∈ I p_i=q_i, i\in I pi=qi,iI, 又因为 ∑ i ∈ I p i = 1 \sum_{i\in I} p_i=1 iIpi=1, 所以 ∑ i ∈ I q i = 1 \sum_{i\in I} q_i=1 iIqi=1, 所以 p i = q i = 0 , i ∉ I p_i=q_i=0, i \not \in I pi=qi=0,iI, 故 p i = q i , i = 1 , 2 , … , n p_i =q_i, i=1,2,\ldots, n pi=qi,i=1,2,,n

证2:

因为 − log ⁡ -\log log严格凸,所以利用[Jensen’ inequality]可以得到:
∑ i p i log ⁡ q i p i ≤ log ⁡ ∑ i p i q i p i = 0 \sum_i p_i \log \frac{q_i}{p_i} \le \log \sum_i p_i \frac{q_i}{p_i} = 0 ipilogpiqilogipipiqi=0
而根据[Jensen’ inequality]等式成立的条件可以得到:
p 1 q 1 = p 2 q 2 = ⋯ = p n q n \frac{p_1}{q_1} = \frac{p_2}{q_2} =\cdots =\frac{p_n}{q_n} q1p1=q2p2==qnpn
∑ i q i = ∑ p i = 1 \sum_i q_i=\sum p_i =1 iqi=pi=1所以 p i = q i p_i=q_i pi=qi时等式成立, p i = 0 p_i=0 pi=0的情况和上面一样讨论.

自然,该不等式可以推广到积分形式:
D ( P ∥ Q ) = − ∫ p ( x ) log ⁡ q ( x ) p ( x ) d x ≥ 0 D(P\| Q)=-\int p(x) \log \frac{q(x)}{p(x)} \mathrm{d}x \ge 0 D(PQ)=p(x)logp(x)q(x)dx0

[Gronwall’s inequality] u ( t ) ≤ f ( t ) e ∫ 0 t h ( s ) d s u(t) \le f(t)e^{\int_0^th(s)\mathrm{d}s} u(t)f(t)e0th(s)ds

假设 f f f [ 0 , + ∞ ) [0, +\infty) [0,+)上非负,单调递增, h , u ∈ C [ 0 , + ∞ ) h, u \in \mathrm{C}[0, +\infty) h,uC[0,+),且 h h h非负, 满足:
u ( t ) ≤ f ( t ) + ∫ 0 t h ( s ) u ( s ) d s , t ≥ 0 , u(t) \le f(t) + \int_{0}^th(s)u(s) \mathrm{d}s, \quad t\ge 0, u(t)f(t)+0th(s)u(s)ds,t0,
则:
u ( t ) ≤ f ( t ) e ∫ 0 t h ( s ) d s . u(t) \le f(t)e^{\int_0^th(s)\mathrm{d}s}. u(t)f(t)e0th(s)ds.

注意:
如果
u ( t ) = f ( t ) + ∫ 0 t h ( s ) u ( s ) d s , u(t) = f(t) + \int_{0}^th(s)u(s) \mathrm{d}s, u(t)=f(t)+0th(s)u(s)ds,
并不能推出:
u ( t ) = f ( t ) e ∫ 0 t h ( s ) d s . u(t) = f(t)e^{\int_0^th(s)\mathrm{d}s}. u(t)=f(t)e0th(s)ds.
但是当 f ( t ) ≡ C 0 ≥ 0 f(t)\equiv C_0 \ge 0 f(t)C00的时候, 是有此类性质的(可用类似证1的方法证明).

证1:

记: w ( t ) = ∫ 0 t h ( s ) u ( s ) d s w(t)=\int_0^t h(s)u(s) \mathrm{d}s w(t)=0th(s)u(s)ds, 则 w ( 0 ) = 0 w(0)=0 w(0)=0, w ′ ( t ) = h ( t ) u ( t ) w'(t)=h(t)u(t) w(t)=h(t)u(t), 可得:
w ′ ( t ) = h ( t ) u ( t ) ≤ h ( t ) f ( t ) + h ( t ) w ( t ) . w'(t)=h(t)u(t)\le h(t) f(t)+h(t)w(t). w(t)=h(t)u(t)h(t)f(t)+h(t)w(t).
即:
w ′ ( t ) − h ( t ) w ( t ) ≤ h ( t ) f ( t ) . w'(t)-h(t)w(t)\le h(t)f(t). w(t)h(t)w(t)h(t)f(t).
H ( t ) = ∫ 0 t h ( s ) d s H(t)=\int_0^t h(s)\mathrm{d}s H(t)=0th(s)ds, 则 H ( 0 ) = 0 , H ′ ( t ) = h ( t ) H(0)=0, H'(t)=h(t) H(0)=0,H(t)=h(t).
俩边同乘以 e − H ( t ) e^{-H(t)} eH(t),不改变符号:
e − H ( t ) ( w ′ ( t ) − h ( t ) w ( t ) ) = ( e − H ( t ) w ( t ) ) ′ ≤ e − H ( t ) h ( t ) f ( t ) , e^{-H(t)}(w'(t)-h(t)w(t))=(e^{-H(t)}w(t))'\le e^{-H(t)}h(t)f(t), eH(t)(w(t)h(t)w(t))=(eH(t)w(t))eH(t)h(t)f(t),
俩边是同时在 [ 0 , t ] [0, t] [0,t]上积分得:
w ( t ) ≤ e H ( t ) ∫ 0 t e − H ( s ) h ( s ) f ( s ) d s . w(t)\le e^{H(t)} \int_0^t e^{-H(s)}h(s)f(s)\mathrm{d}s. w(t)eH(t)0teH(s)h(s)f(s)ds.
注意到(因为 f ( t ) f(t) f(t)单增, 且积分内部为非负):
∫ 0 t e − H ( s ) h ( s ) f ( s ) d s ≤ ∫ 0 t e − H ( s ) h ( s ) d s   f ( t ) = − e − H ( s ) ∣ 0 t   f ( t ) = ( 1 − e − H ( t ) ) f ( t ) , \int_0^t e^{-H(s)}h(s)f(s)\mathrm{d}s\le \int_0^t e^{-H(s)}h(s)\mathrm{d}s \: f(t)=-e^{-H(s)}|_0^t \: f(t)=(1-e^{-H(t)})f(t), 0teH(s)h(s)f(s)ds0teH(s)h(s)dsf(t)=eH(s)0tf(t)=(1eH(t))f(t),
所以:
u ( t ) ≤ f ( t ) + w ( t ) ≤ e H ( t ) f ( t ) . u(t) \le f(t)+w(t) \le e^{H(t)}f(t). u(t)f(t)+w(t)eH(t)f(t).
证毕.

证2( u u u需非负):

u ( t ) ≤ f ( t ) + ∫ 0 t h ( s ) u ( s ) d s ≤ f ( t ) + ϵ + ∫ 0 t h ( s ) u ( s ) d s , ϵ > 0. \begin{array}{ll} u(t) &\le f(t) + \int_{0}^th(s)u(s) \mathrm{d}s \\ & \le f(t) +\epsilon + \int_{0}^th(s)u(s) \mathrm{d}s, \epsilon > 0. \end{array} u(t)f(t)+0th(s)u(s)dsf(t)+ϵ+0th(s)u(s)ds,ϵ>0.
则:
h ( t ) u ( t ) f ( t ) + ϵ + ∫ 0 t h ( s ) u ( s ) d s ≤ h ( t ) \frac{h(t)u(t)}{f(t)+\epsilon + \int_{0}^th(s)u(s) \mathrm{d}s} \le h(t) f(t)+ϵ+0th(s)u(s)dsh(t)u(t)h(t)
俩边在 [ 0 , t ] [0,t] [0,t]上积分:
∫ 0 t h ( s ) u ( s ) f ( s ) + ϵ + ∫ 0 s h ( τ ) u ( τ ) d τ d s ≤ ∫ 0 t h ( s ) d s \int_0^t \frac{h(s)u(s)}{f(s)+\epsilon + \int_{0}^sh(\tau)u(\tau) \mathrm{d}\tau} \mathrm{d}s\le \int_0^t h(s)\mathrm{d}s 0tf(s)+ϵ+0sh(τ)u(τ)dτh(s)u(s)ds0th(s)ds
注意,因为 f ( t ) f(t) f(t)是单增的,所以 s ∈ [ 0 , t ] s\in[0, t] s[0,t]时:
h ( s ) u ( s ) f ( s ) + ϵ + ∫ 0 s h ( τ ) u ( τ ) d τ ≥ h ( s ) u ( s ) f ( t ) + ϵ + ∫ 0 s h ( τ ) u ( τ ) d τ ≥ 0 , \frac{h(s)u(s)}{f(s)+\epsilon + \int_{0}^sh(\tau)u(\tau) \mathrm{d}\tau} \ge \frac{h(s)u(s)}{f(t)+\epsilon + \int_{0}^sh(\tau)u(\tau) \mathrm{d}\tau} \ge 0, f(s)+ϵ+0sh(τ)u(τ)dτh(s)u(s)f(t)+ϵ+0sh(τ)u(τ)dτh(s)u(s)0,
所以:
∫ 0 t h ( s ) u ( s ) f ( t ) + ϵ + ∫ 0 s h ( τ ) u ( τ ) d τ d s = ln ⁡ f ( t ) + ϵ + ∫ 0 t h ( s ) u ( s ) d s f ( t ) + ϵ ≤ ∫ 0 t h ( s ) d s , \int_0^t \frac{h(s)u(s)}{f(t)+\epsilon + \int_{0}^sh(\tau)u(\tau) \mathrm{d}\tau} \mathrm{d}s=\ln \frac{f(t)+\epsilon+\int_0^t h(s)u(s)\mathrm{d}s}{f(t)+\epsilon}\le \int_0^t h(s)\mathrm{d}s, 0tf(t)+ϵ+0sh(τ)u(τ)dτh(s)u(s)ds=lnf(t)+ϵf(t)+ϵ+0th(s)u(s)ds0th(s)ds,
所以:
f ( t ) + ϵ + ∫ 0 t h ( s ) u ( s ) d s ≤ e H ( t ) ( f ( t ) + ϵ ) , f(t)+\epsilon + \int_0^t h(s)u(s)\mathrm{d}s \le e^{H(t)}(f(t)+\epsilon), f(t)+ϵ+0th(s)u(s)dseH(t)(f(t)+ϵ),
其中 H ( t ) = ∫ 0 t h ( s ) d s H(t)=\int_0^t h(s) \mathrm{d}s H(t)=0th(s)ds.
俩边令 ϵ → 0 \epsilon \rightarrow0 ϵ0得:
u ( t ) ≤ f ( t ) + ∫ 0 t h ( s ) u ( s ) d s ≤ e H ( t ) f ( t ) . u(t) \le f(t)+ \int_0^t h(s)u(s)\mathrm{d}s \le e^{H(t)}f(t). u(t)f(t)+0th(s)u(s)dseH(t)f(t).
证毕.

证3:

M ( T ) = max ⁡ 0 ≤ t ≤ T ∫ 0 t h ( s ) u ( s ) d s M(T)=\max \limits_{0\le t\le T} \int_0^t h(s)u(s)\mathrm{d}s M(T)=0tTmax0th(s)u(s)ds,
则:
u ( t ) ≤ f ( t ) + M ( T ) ⇒ h ( t ) u ( t ) ≤ h ( t ) f ( t ) + M ( T ) h ( t ) , u(t)\le f(t)+M(T) \\ \Rightarrow h(t)u(t) \le h(t)f(t) + M(T)h(t), u(t)f(t)+M(T)h(t)u(t)h(t)f(t)+M(T)h(t),
于是:
u ( t ) ≤ f ( t ) + ∫ 0 t h ( s ) f ( s ) + M ( T ) h ( s ) d s . u(t) \le f(t)+\int_0^th(s)f(s)+M(T)h(s)\mathrm{d}s. u(t)f(t)+0th(s)f(s)+M(T)h(s)ds.
因为 f ( t ) f(t) f(t)单增, 所以:
∫ 0 t h ( s ) f ( s ) d s ≤ f ( t ) ∫ 0 t h ( s ) d s . \int_0^t h(s)f(s)\mathrm{d}s\le f(t) \int_0^th(s)\mathrm{d}s. 0th(s)f(s)dsf(t)0th(s)ds.
H ( t ) = ∫ 0 t h ( s ) d s H(t)=\int_0^t h(s)\mathrm{d}s H(t)=0th(s)ds, 可得:
u ( t ) ≤ f ( t ) ( 1 + H ( t ) ) + H ( t ) M ( T ) ⇒ h ( t ) u ( t ) ≤ f ( t ) h ( t ) ( 1 + H ( t ) ) + h ( t ) H ( t ) M ( T ) . u(t)\le f(t)(1+H(t))+H(t)M(T) \\ \Rightarrow h(t)u(t)\le f(t)h(t)(1+H(t))+h(t)H(t)M(T). u(t)f(t)(1+H(t))+H(t)M(T)h(t)u(t)f(t)h(t)(1+H(t))+h(t)H(t)M(T).
于是:
u ( t ) ≤ f ( t ) + ∫ 0 t f ( s ) h ( s ) ( 1 + H ( s ) ) + h ( s ) H ( s ) M ( T ) d s . u(t) \le f(t)+\int_0^t f(s)h(s)(1+H(s))+h(s)H(s)M(T) \mathrm{d} s. u(t)f(t)+0tf(s)h(s)(1+H(s))+h(s)H(s)M(T)ds.
注意到:
∫ 0 t H ( s ) h ( s ) d s = H 2 ( t ) − H 2 ( 0 ) 2 = H 2 ( t ) 2 . \int_0^t H(s)h(s) \mathrm{d}s=\frac{H^2(t)-H^2(0)}{2}=\frac{H^2(t)}{2}. 0tH(s)h(s)ds=2H2(t)H2(0)=2H2(t).
所以:
u ( t ) ≤ f ( t ) ( 1 + H ( t ) + H 2 ( t ) 2 ! ) + H 2 ( t ) M ( T ) 2 ! . u(t) \le f(t)(1+H(t)+ \frac{H^2(t)}{2!})+\frac{H^2(t)M(T)}{2!}. u(t)f(t)(1+H(t)+2!H2(t))+2!H2(t)M(T).
重复此类操作可得:
u ( t ) ≤ f ( t ) ( 1 + H ( t ) + H 2 ( t ) 2 ! + . . . + H n ( t ) n ! ) + H n ( t ) M ( T ) n ! . u(t) \le f(t)(1+H(t)+ \frac{H^2(t)}{2!} + ...+\frac{H^n(t)}{n!})+\frac{H^n(t)M(T)}{n!}. u(t)f(t)(1+H(t)+2!H2(t)+...+n!Hn(t))+n!Hn(t)M(T).
n → + ∞ n\rightarrow + \infty n+:
u ( t ) ≤ f ( t ) e H ( t ) + 0. u(t) \le f(t)e^{H(t)}+0. u(t)f(t)eH(t)+0.
证毕.
注:
最后这部分也可以利用:
1 + t + … + t n n ! ≤ e t , t ≥ 0 1+t+\ldots+\frac{t^n}{n!}\le e^t, t\ge0 1+t++n!tnet,t0
来证明, 但是我觉得如果是俩边取极限,那就不必考虑 t t t得正负问题了,虽然多此一举,但是更酷啊.

[ C p C_p Cp inequality] ( ∣ a ∣ + ∣ b ∣ ) p ≤ C p ( ∣ a ∣ p + ∣ b ∣ p ) (|a|+|b|)^p \le C_p(|a|^p+|b|^p) (a+b)pCp(ap+bp)

假设 a , b a, b a,b为实数, p > 0 p>0 p>0, 则
( ∣ a ∣ + ∣ b ∣ ) p ≤ C p ( ∣ a ∣ p + ∣ b ∣ p ) , (|a|+|b|)^p \le C_p(|a|^p+|b|^p), (a+b)pCp(ap+bp),
其中
C p = { 1 , 0 < p ≤ 1 , 2 p − 1 , p > 1. C_p = \left \{ \begin{array}{ll} 1, & 0<p \le 1, \\ 2^{p-1}, & p>1. \end{array} \right. Cp={1,2p1,0<p1,p>1.

证明:

0 < p ≤ 1 0<p\le1 0<p1: 考虑函数 f ( x ) = ( 1 + x ) p − x p − 1 , x ≥ 0 f(x) = (1+x)^p-x^p-1, x \ge 0 f(x)=(1+x)pxp1,x0, 其导数为
f ′ ( x ) = p [ ( x + 1 ) p − 1 − x p − 1 ] < 0 , f'(x) = p[(x+1)^{p-1}-x^{p-1}]<0, f(x)=p[(x+1)p1xp1]<0,
f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)上单调递减,由 f ( 0 ) = 0 f(0)=0 f(0)=0, 所以 f ( x ) ≤ 0 f(x)\le0 f(x)0. 代入 ∣ b ∣ / ∣ a ∣ ( a ≠ 0 ) |b|/|a|(a\not =0) b/a(a=0)即得:
( ∣ a ∣ + ∣ b ∣ ) p ≤ C p ( ∣ a ∣ p + ∣ b ∣ p ) , (|a|+|b|)^p \le C_p(|a|^p+|b|^p), (a+b)pCp(ap+bp),
显然, a = 0 a=0 a=0时也成立.

p > 1 p>1 p>1: 考虑凸函数 ∣ x ∣ p |x|^p xp可得:
( ∣ a ∣ + ∣ b ∣ 2 ) p ≤ 1 2 ( ∣ a ∣ p + ∣ b ∣ p ) , (\frac{|a|+|b|}{2})^{p} \le \frac{1}{2}(|a|^p+|b|^p), (2a+b)p21(ap+bp),
证毕.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值