假设 p ≥ 1 p\ge1 p≥1, 而且 g 1 g_1 g1和 g 2 g_2 g2是测度空间 ( X , μ ) (X,\mu) (X,μ)上p-方可积函数,则
∥ g 1 + g 2 ∥ p ≤ ∥ g 1 ∥ p + ∥ g 2 ∥ p \|g_1+g_2\|_p\le\|g_1\|_p+\|g_2\|_p ∥g1+g2∥p≤∥g1∥p+∥g2∥p
证明:
当 ∥ g i ∥ p = + ∞ \|g_i\|_p=+\infty ∥gi∥p=+∞时,不等式成立,现假设 ∥ g i ∥ p < + ∞ \|g_i\|_p<+\infty ∥gi∥p<+∞。此时,由于 p ≥ 1 p\ge1 p≥1,容易验证有如下的不等式:
∣ g 1 + g 2 ∣ p ≤ ∣ g 1 ∣ p + ∣ g 2 ∣ p |g_1+g_2|^p\le|g_1|^p+|g_2|^p ∣g1+g2∣p≤∣g1∣p+∣g2∣p
Minkowski不等式
最新推荐文章于 2023-03-08 20:55:24 发布