Minkowski不等式

假设 p ≥ 1 p\ge1 p1, 而且 g 1 g_1 g1 g 2 g_2 g2是测度空间 ( X , μ ) (X,\mu) (X,μ)上p-方可积函数,则
∥ g 1 + g 2 ∥ p ≤ ∥ g 1 ∥ p + ∥ g 2 ∥ p \|g_1+g_2\|_p\le\|g_1\|_p+\|g_2\|_p g1+g2pg1p+g2p
证明:
∥ g i ∥ p = + ∞ \|g_i\|_p=+\infty gip=+时,不等式成立,现假设 ∥ g i ∥ p < + ∞ \|g_i\|_p<+\infty gip<+。此时,由于 p ≥ 1 p\ge1 p1,容易验证有如下的不等式:
∣ g 1 + g 2 ∣ p ≤ ∣ g 1 ∣ p + ∣ g 2 ∣ p |g_1+g_2|^p\le|g_1|^p+|g_2|^p g1+g2pg1p+g2p

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值