Minkowski不等式

该博客介绍了Minkowski不等式,当p≥1时,对于测度空间(X,μ)上p-方可积函数g1和g2,证明了∥g1+g2∥p≤∥g1∥p+∥g2∥p这一结论。通过利用Holder不等式进行推导。" 106838555,7329729,MySQL复杂查询实践,"['数据库', 'SQL查询', '数据处理', '联接查询', '聚合函数']

假设 p ≥ 1 p\ge1 p1, 而且 g 1 g_1 g1 g 2 g_2 g2是测度空间 ( X , μ ) (X,\mu) (X,μ)上p-方可积函数,则
∥ g 1 + g 2 ∥ p ≤ ∥ g 1 ∥ p + ∥ g 2 ∥ p \|g_1+g_2\|_p\le\|g_1\|_p+\|g_2\|_p g1+g2pg1p+g2p
证明:
∥ g i ∥ p = + ∞ \|g_i\|_p=+\infty gip=+时,不等式成立,现假设 ∥ g i ∥ p < + ∞ \|g_i\|_p<+\infty gip<+。此时,由于 p ≥ 1 p\ge1 p1,容易验证有如下的不等式:
∣ g 1 + g 2 ∣ p ≤ ∣ g 1 ∣ p + ∣ g 2 ∣ p |g_1+g_2|^p\le|g_1|^p+|g_2|^p g1+g2pg1p+g2p因此,我们有 ∥ g 1 + g 2 ∥ p ≤ + ∞ \|g_1+g_2\|_p\le+\infty g1+g2p+
∫ X ∣ g 1 + g 2 ∣ p d μ = ∫ X ∣ g 1 + g 2 ∣ ∣ g 1 + g 2 ∣ p − 1 d μ ≤ ∫ X ∣ g 1 ∣ ∣ g 1 + g 2 ∣ p − 1 d μ + ∫ X ∣ g 2 ∣ ∣ g 1 + g 2 ∣ p − 1 d μ \begin{aligned} \int_X|g_1+g_2|^pd\mu =& \int_X|g_1+g_2||g_1+g_2|^{p-1}d\mu\\\le&\int_X|g_1||g_1+g_2|^{p-1}d\mu+\int_X|g_2||g_1+g_2|^{p-1}d\mu\\ \end{aligned} Xg1+g2pdμ=Xg1+g2g1+g2p1dμXg1g1+g2p1dμ+Xg2g1+g2p1dμ q q q满足 1 p + 1 q = 1 \frac1p+\frac1q = 1 p1+q1=1, 根据Holder不等式
∫ X ∣ g 1 ∣ ∣ g 1 + g 2 ∣ p − 1 d μ = ∥ ∣ g 1 ∣ ∣ g 1 + g 2 ∣ p − 1 ∥ 1 ≤ ∥ g 1 ∥ p ∥ ∣ g 1 + g 2 ∣ p − 1 ∥ q \int_X|g_1||g_1+g_2|^{p-1}d\mu = \||g_1||g_1+g_2|^{p-1}\|_1\le\|g_1\|_p\||g_1+g_2|^{p-1}\|_{q} Xg1g1+g2p1dμ=g1g1+g2p11g1pg1+g2p1q
其中,注意到 p q = p + q pq = p+q pq=p+q,可以得到如下的式子
∥ ∣ g 1 + g 2 ∣ p − 1 ∥ q = ( ∫ X ∣ g 1 + g 2 ∣ q ( p − 1 ) d μ ) 1 q = ( ( ∫ X ∣ g 1 + g 2 ∣ p d μ ) 1 p ) p q = ∥ g 1 + g 2 ∥ p p q \||g_1+g_2|^{p-1}\|_q = (\int_X|g_1+g_2|^{q(p-1)}d\mu)^{\frac1q} = ((\int_X|g_1+g_2|^pd\mu)^{\frac1p})^{\frac pq} = \|g_1+g_2\|_p^{\frac pq} g1+g2p1q=(Xg1+g2q(p1)dμ)q1=((Xg1+g2pdμ)p1)qp=g1+g2pqp同理可以得到另一部分的不等式,带入以前的到的不等式即可得
∥ g 1 + g 2 ∥ p p ≤ ∥ g 1 ∥ p ∥ g 1 + g 2 ∥ p p q + ∥ g 2 ∥ p ∥ g 1 + g 2 ∥ p p q ∥ g 1 + g 2 ∥ p ≤ ∥ g 1 ∥ p + ∥ g 2 ∥ p \|g_1+g_2\|_p^p \le \|g_1\|_p\|g_1+g_2\|_p^{\frac pq}+\|g_2\|_p\|g_1+g_2\|_p^{\frac pq}\\ \|g_1+g_2\|_p\le\|g_1\|_p+\|g_2\|_p g1+g2ppg1pg1+g2pqp+g2pg1+g2pqpg1+g2pg1p+g2p

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值