假设
p
≥
1
p\ge1
p≥1, 而且
g
1
g_1
g1和
g
2
g_2
g2是测度空间
(
X
,
μ
)
(X,\mu)
(X,μ)上p-方可积函数,则
∥
g
1
+
g
2
∥
p
≤
∥
g
1
∥
p
+
∥
g
2
∥
p
\|g_1+g_2\|_p\le\|g_1\|_p+\|g_2\|_p
∥g1+g2∥p≤∥g1∥p+∥g2∥p
证明:
当
∥
g
i
∥
p
=
+
∞
\|g_i\|_p=+\infty
∥gi∥p=+∞时,不等式成立,现假设
∥
g
i
∥
p
<
+
∞
\|g_i\|_p<+\infty
∥gi∥p<+∞。此时,由于
p
≥
1
p\ge1
p≥1,容易验证有如下的不等式:
∣
g
1
+
g
2
∣
p
≤
∣
g
1
∣
p
+
∣
g
2
∣
p
|g_1+g_2|^p\le|g_1|^p+|g_2|^p
∣g1+g2∣p≤∣g1∣p+∣g2∣p因此,我们有
∥
g
1
+
g
2
∥
p
≤
+
∞
\|g_1+g_2\|_p\le+\infty
∥g1+g2∥p≤+∞。
∫
X
∣
g
1
+
g
2
∣
p
d
μ
=
∫
X
∣
g
1
+
g
2
∣
∣
g
1
+
g
2
∣
p
−
1
d
μ
≤
∫
X
∣
g
1
∣
∣
g
1
+
g
2
∣
p
−
1
d
μ
+
∫
X
∣
g
2
∣
∣
g
1
+
g
2
∣
p
−
1
d
μ
\begin{aligned} \int_X|g_1+g_2|^pd\mu =& \int_X|g_1+g_2||g_1+g_2|^{p-1}d\mu\\\le&\int_X|g_1||g_1+g_2|^{p-1}d\mu+\int_X|g_2||g_1+g_2|^{p-1}d\mu\\ \end{aligned}
∫X∣g1+g2∣pdμ=≤∫X∣g1+g2∣∣g1+g2∣p−1dμ∫X∣g1∣∣g1+g2∣p−1dμ+∫X∣g2∣∣g1+g2∣p−1dμ取
q
q
q满足
1
p
+
1
q
=
1
\frac1p+\frac1q = 1
p1+q1=1, 根据Holder不等式
∫
X
∣
g
1
∣
∣
g
1
+
g
2
∣
p
−
1
d
μ
=
∥
∣
g
1
∣
∣
g
1
+
g
2
∣
p
−
1
∥
1
≤
∥
g
1
∥
p
∥
∣
g
1
+
g
2
∣
p
−
1
∥
q
\int_X|g_1||g_1+g_2|^{p-1}d\mu = \||g_1||g_1+g_2|^{p-1}\|_1\le\|g_1\|_p\||g_1+g_2|^{p-1}\|_{q}
∫X∣g1∣∣g1+g2∣p−1dμ=∥∣g1∣∣g1+g2∣p−1∥1≤∥g1∥p∥∣g1+g2∣p−1∥q
其中,注意到
p
q
=
p
+
q
pq = p+q
pq=p+q,可以得到如下的式子
∥
∣
g
1
+
g
2
∣
p
−
1
∥
q
=
(
∫
X
∣
g
1
+
g
2
∣
q
(
p
−
1
)
d
μ
)
1
q
=
(
(
∫
X
∣
g
1
+
g
2
∣
p
d
μ
)
1
p
)
p
q
=
∥
g
1
+
g
2
∥
p
p
q
\||g_1+g_2|^{p-1}\|_q = (\int_X|g_1+g_2|^{q(p-1)}d\mu)^{\frac1q} = ((\int_X|g_1+g_2|^pd\mu)^{\frac1p})^{\frac pq} = \|g_1+g_2\|_p^{\frac pq}
∥∣g1+g2∣p−1∥q=(∫X∣g1+g2∣q(p−1)dμ)q1=((∫X∣g1+g2∣pdμ)p1)qp=∥g1+g2∥pqp同理可以得到另一部分的不等式,带入以前的到的不等式即可得
∥
g
1
+
g
2
∥
p
p
≤
∥
g
1
∥
p
∥
g
1
+
g
2
∥
p
p
q
+
∥
g
2
∥
p
∥
g
1
+
g
2
∥
p
p
q
∥
g
1
+
g
2
∥
p
≤
∥
g
1
∥
p
+
∥
g
2
∥
p
\|g_1+g_2\|_p^p \le \|g_1\|_p\|g_1+g_2\|_p^{\frac pq}+\|g_2\|_p\|g_1+g_2\|_p^{\frac pq}\\ \|g_1+g_2\|_p\le\|g_1\|_p+\|g_2\|_p
∥g1+g2∥pp≤∥g1∥p∥g1+g2∥pqp+∥g2∥p∥g1+g2∥pqp∥g1+g2∥p≤∥g1∥p+∥g2∥p
Minkowski不等式
最新推荐文章于 2023-03-08 20:55:24 发布
该博客介绍了Minkowski不等式,当p≥1时,对于测度空间(X,μ)上p-方可积函数g1和g2,证明了∥g1+g2∥p≤∥g1∥p+∥g2∥p这一结论。通过利用Holder不等式进行推导。"
106838555,7329729,MySQL复杂查询实践,"['数据库', 'SQL查询', '数据处理', '联接查询', '聚合函数']
682

被折叠的 条评论
为什么被折叠?



