2020年8月26日 记录
将训练好的epoch_10.pth作为参数,对其他图进行预测。比如我们的transient,本身看衬度很好的。
【transient.lsm】
imagej导入,image-transform中旋转,然后bin=4(x和y)
bin后为240*128.
save as transient.png
导入Matlab查看图像:
格式为:128x240 uint8
背景为0-5左右的值。
Pwd:/Users/verona/Desktop/Electrophysiology
Cv2 切片处理 img[:,50:178,:]
背景是直接的黑色的时候,去预测,还是预测到全是背景。
当把图像的背景在Matlab里面进行了一些修改后,将像素值小于10 的全部变成白色,此时就可以识别的很清楚。
所以是不是可以把我的数据集的背景批量修改一下,然后训练一个新模型,看看是不是有改善。
或者训练集中同时又有白色背景,又有黑色灰色等的背景,去训练模型。
【h11.lsm】
Turn left,原始大小为960512,bin=4后为240128;save as h11.png
In [1]: