使用multi-class进行分类应用

这篇博客记录了2020年8月26日的实验,涉及使用深度学习模型对图像进行多类别分类。通过批量处理输入数据集,将图像背景在Matlab中进行修改,探讨了模型对不同背景的识别效果。作者提到可能通过批量修改数据集背景或训练包含多种背景的模型来提高性能。同时提到了批量图像预处理的Python脚本change_background.py。
摘要由CSDN通过智能技术生成

2020年8月26日 记录

将训练好的epoch_10.pth作为参数,对其他图进行预测。比如我们的transient,本身看衬度很好的。

【transient.lsm】

imagej导入,image-transform中旋转,然后bin=4(x和y)
bin后为240*128.
save as transient.png
导入Matlab查看图像:
格式为:128x240 uint8
背景为0-5左右的值。
Pwd:/Users/verona/Desktop/Electrophysiology

Cv2 切片处理 img[:,50:178,:]

背景是直接的黑色的时候,去预测,还是预测到全是背景。
当把图像的背景在Matlab里面进行了一些修改后,将像素值小于10 的全部变成白色,此时就可以识别的很清楚。

所以是不是可以把我的数据集的背景批量修改一下,然后训练一个新模型,看看是不是有改善。
或者训练集中同时又有白色背景,又有黑色灰色等的背景,去训练模型。

【h11.lsm】

Turn left,原始大小为960512,bin=4后为240128;save as h11.png

In [1]: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值