kaggle竞赛宝典 | LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。

原文链接:LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势

近年来,大型语言模型(Large Language Models,LLMs)在自然语言处理领域取得了显著进展。受此启发,研究人员开始探索将LLMs应用于时间序列预测任务的可能性。由于时间序列数据与文本数据在特征上存在显著差异,直接将LLMs应用于时间序列预测仍面临诸多挑战。

为了解决这一问题,Jin等人提出了一种名为LLM-Mixer的创新框架,旨在通过引入多尺度时间序列分解,使LLMs更好地适应时间序列预测任务。该研究的主要目的是提高预测精度,捕捉时间序列数据中的短期波动和长期趋势。

1 研究动机与挑战

时间序列预测在金融、能源管理、医疗保健等诸多领域具有重要应用价值。传统的预测模型,如ARIMA和指数平滑法,在处理复杂的非线性、非平稳的真实世界时间序列数据时,往往面临局限性。近年来,深度学习模型,如CNN和RNN,在时间序列预测任务中展现出优异表现,但它们在捕捉长期依赖关系方面仍存在不足。

与此同时,预训练的LLMs凭借其在少样本/零样本学习、多模态知识整合和复杂推理等方面的出色能力,正被广泛应用于各个领域。然而,将LLMs直接用于时间序列预测仍面临以下挑战:

  1. 时间序列数据通常呈现连续且不规则的模式,与LLMs所处理的离散文本数据存在显著差异;

  2. 时间序列数据通常具有多个时间尺度,包括短期波动和长期趋势,单一尺度的建模难以兼顾这些复杂模式;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值