据pytorch的官方文档,torch.nn.functional里的cross_entropy是基于log_softmax和nll_loss实现的。
没关系,通过最简单的torch原函数复现,可以较深理解当中的原理。
import torch
def my_cross_entropy(input, target, reduction="mean"):
# input.shape: torch.size([-1, class])
# target.shape: torch.size([-1])
# reduction = "mean" or "sum"
# input是模型输出的结果,与target求loss
# target的长度和input第一维的长度一致
# target的元素值为目标class
# reduction默认为mean,即对loss求均值
# 还有另一种为sum,对loss求和
# 这里对input所有元素求exp
exp = torch.exp(input)
# 根据target的索引,在exp第一维取出元素值,这是softmax的分子
tmp1 = exp.gather(1, target.unsqueeze(-1)).squeeze()
# 在exp第一维求和,这是softmax的分母
tmp2 = exp.sum(1)
# softmax公式:ei / sum(ej)
softmax = tmp1 / tmp2
# cross-entropy公式: -yi * log(pi)
# 因为target的yi为1,其余为0,所以在tmp1直接把目标拿出来,
# 公式中的pi就是softmax的结果
log = -torch.log(softmax)
# 官方实现中,reduction有mean/sum及none
# 只是对交叉熵后处理的差别
if reduction == "mean": return log.mean()
else: return log.sum()
与官方函数的结果比较
import torch.nn.functional as F
input = torch.randn(3, 5, requires_grad=True)
target = torch.randint(5, (3,), dtype=torch.int64)
loss1_mean = F.cross_entropy(input, target)
loss2_mean = my_cross_entropy(input, target)
print(loss1_mean)
print(loss2_mean)
# tensor(3.2158, grad_fn=<NllLossBackward>)
# tensor(3.2158, grad_fn=<MeanBackward0>)
loss1_sum = F.cross_entropy(input, target, reduction="sum")
loss2_sum = my_cross_entropy(input, target, reduction="sum")
print(loss1_sum)
print(loss2_sum)
# tensor(9.6475, grad_fn=<NllLossBackward>)
# tensor(9.6475, grad_fn=<SumBackward0>)
softmax的数学原理及其推导可见小白都能看懂的softmax详解
pytorch的cross-entropy分析可见Pytorch里的CrossEntropyLoss详解
搭配食用更佳,祝好运!