pytorch的cross_entropy实现

据pytorch的官方文档,torch.nn.functional里的cross_entropy是基于log_softmax和nll_loss实现的。
没关系,通过最简单的torch原函数复现,可以较深理解当中的原理。

import torch

def my_cross_entropy(input, target, reduction="mean"):
	# input.shape: torch.size([-1, class])
	# target.shape: torch.size([-1])
	# reduction = "mean" or "sum"
	# input是模型输出的结果,与target求loss
	# target的长度和input第一维的长度一致
	# target的元素值为目标class
	# reduction默认为mean,即对loss求均值
	# 还有另一种为sum,对loss求和

	# 这里对input所有元素求exp
    exp = torch.exp(input)
    # 根据target的索引,在exp第一维取出元素值,这是softmax的分子
    tmp1 = exp.gather(1, target.unsqueeze(-1)).squeeze()
    # 在exp第一维求和,这是softmax的分母
    tmp2 = exp.sum(1)
	# softmax公式:ei / sum(ej)
    softmax = tmp1 / tmp2
    # cross-entropy公式: -yi * log(pi)
    # 因为target的yi为1,其余为0,所以在tmp1直接把目标拿出来,
    # 公式中的pi就是softmax的结果
    log = -torch.log(softmax)
    # 官方实现中,reduction有mean/sum及none
    # 只是对交叉熵后处理的差别
    if reduction == "mean": return log.mean()
    else: return log.sum()

与官方函数的结果比较

import torch.nn.functional as F

input = torch.randn(3, 5, requires_grad=True)
target = torch.randint(5, (3,), dtype=torch.int64)

loss1_mean = F.cross_entropy(input, target)
loss2_mean = my_cross_entropy(input, target)
print(loss1_mean)
print(loss2_mean)
# tensor(3.2158, grad_fn=<NllLossBackward>)
# tensor(3.2158, grad_fn=<MeanBackward0>)

loss1_sum = F.cross_entropy(input, target, reduction="sum")
loss2_sum = my_cross_entropy(input, target, reduction="sum")
print(loss1_sum)
print(loss2_sum)
# tensor(9.6475, grad_fn=<NllLossBackward>)
# tensor(9.6475, grad_fn=<SumBackward0>)

softmax的数学原理及其推导可见小白都能看懂的softmax详解
pytorch的cross-entropy分析可见Pytorch里的CrossEntropyLoss详解
搭配食用更佳,祝好运!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值