【Linear Algebra 线性代数】5、转置-置换-向量空间R

学习资源:
 - 麻省理工公开课:线性代数【讲师:Gilbert Strang】
 - 绘图工具 - Geogebra
个人笔记

转置-置换

回顾一下上一节内容:
如果不考虑行变换,相比于

EA=U E A = U

我们更偏向于
A=LU A = L U

如果需要行变换,我们就需要加上置换矩阵
PA=LU P A = L U

置换矩阵的性质
置换矩阵皆可逆且
P1=PT P − 1 = P T

置换矩阵的数量为n!。

下面我们讨论一下转置矩阵。

转置矩阵(Transpose Matrix)

转置矩阵即将原矩阵的行坐标和列坐标互换后得到的矩阵:

(Aij)T=Bji ( A i j ) T = B j i

举个栗子:
一个3x2的矩阵
124331T=[132341] [ 1 3 2 3 4 1 ] T = [ 1 2 4 3 3 1 ]

em…如果将原矩阵乘以它的转置会得到什么结果?
124331[132341]=101171131171117 [ 1 3 2 3 4 1 ] [ 1 2 4 3 3 1 ] = [ 10 11 7 11 3 11 7 11 17 ]

如果你有动脑计算的话相信计算到一半的时候你已经发现规律了吧?
原矩阵的第i行 乘 转置矩阵的第j列
等同于
原矩阵的第j行 乘 转置矩阵的第i列

A.Row(i)AT.Col(j)=A.Row(j)AT.Col(i) A . R o w ( i ) ∗ A T . C o l ( j ) = A . R o w ( j ) ∗ A T . C o l ( i )

得到的结果是一个对称矩阵(Symmetric Matrix),而对称矩阵有一个性质,即对称矩阵B
BT=B B T = B

根据该性质有:
(AAT)T=(AT)T(A)T=AAT ( A A T ) T = ( A T ) T ( A ) T = A A T

因此对矩阵A乘其转置矩阵得到的结果恒为对称矩阵。
至此,矩阵相关的基础内容已经介绍完了,接下来要进入Linear Algebra的核心内容了~

向量空间R

什么是向量空间?举个栗子:
二维空间R^2(two-dimension,由二维向量组成,二维向量的值都属于实数集R,(3,2),(0,0),(π,e)…),也可以将其想象成一个二维平面,即直角空间坐标系(笛卡尔坐标系)。
三维空间R^3(three-dimension,由三维向量组成…)
…N维空间等等。

这些向量空间都遵循一个规则,它们都对数乘和加法两种运算封闭。
换句话说,即对线性组合封闭。
举个栗子:
在直角坐标系中,我们可以称第一象限为一个向量空间吗?
这里写图片描述
① 对第一象限内的任意两个向量相加,结果仍处于第一象限中。
② 对第一象限内任意向量进行数乘(乘以一个任意数),结果不一定处于第一象限中。例如:
这里写图片描述
对向量a乘以-2,结果在第三象限中,因此我们说第一象限不是空间,向量空间必须对数乘和加法两种运算封闭。

子空间

在一个空间内使用其向量进行数乘和加法运算,如果结果仍在某空间Rn中,则称该空间为空间Rn的子空间。

沿用刚刚的例子,以及空间的定义。在R^2中是否存在子空间,它的子空间是怎样的?
可以想到,在R^2空间中,对任意向量进行数乘(乘任意数)运算后,它的结果都在一条直线l上,同时,直线l上任意向量之间进行加法运算,结果仍在直线l上,因此,可以认为该直线为R^2空间的一个子空间。
这里写图片描述

那么,是否任意一条直线都是R^2空间的子空间呢?
这里写图片描述
否,如图中的直线m,对直线m上任意向量乘0结果不在直线m上,即不对加法封闭,因此直线m不是R^2的子空间。
这说明了一个重要的性质,必须过原点。

汇总一下,R^2向量空间下的所有子空间:
① R^2本身 <= 最大子空间;
② 任意过原点(0,0)的直线 <= 注意,这里的直线不等同于一维空间,尽管他们看起来很相似;
③ 0 <= 最小子空间。

拓展到R^3空间看看,
R^3向量空间下的所有子空间:
① R^3本身 <= 最大子空间;
② 任意过原点(0,0,0)的直线;
③ 任意过原点(0,0,0)的平面;
④ 0 <= 最小子空间。

如何从矩阵中构造子空间?
举个栗子:

A=124331 A = [ 1 3 2 3 4 1 ]

我们可以通过列向量构造,why?
矩阵A中各列属于R^3空间,矩阵A中各列的所有线性组合可以构成一个子空间,我们称之为列空间,用C(A)表示。
用图像来表示的话,列空间就是一个过原点的平面,当然,如果两列共线的话,那么列空间将会是一条过原点的直线。

我们给出假设:
直线L和平面M均为R^3的子空间,那么M∪L,M和L的并集是否为R^3的子空间?
==============================思考线===============================
显然不能,为什么?因为M∪L对加法不封闭,任取直线L上1个向量和平面M上1个向量,这两个向量加法运算的结果不在M∪L中。
这里写图片描述

直线L和平面M均为R^3的子空间,那么M∩L,M和L的交集是否为R^3的子空间?
==============================思考线===============================
答案是肯定的,那么推广到任意情况呢?R^3的子空间S和T的交集是否仍为R^3的子空间?
答案也是肯定的,从S∩T中任取两个向量,由于它们即属于S也属于T,同时S和T为R^3的子空间,因此必定对线性组合封闭,故这两个向量的线性组合仍在S∩T中,故S∩T仍为R^3的子空间。

谨记:空间必须满足数乘和加法封闭。

下一节将讨论列空间和零空间~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值