提到的论文

VDSR 
DRCN
EDSR
MDSR
MemNet
SotA CNN-based SR methods
ESPCNN [22], EDSR [18], RDN

[36] and RCAN [35], these methods zoom in the feature
maps at the end of networks with the sub-pixel convolution
[18].

SRCNN通过双三次插值放大了低分辨率图像
在馈入网络之前。 Kim等。 [14]增加
网络的深度,并将残余学习用于
稳定的训练。 Kim等。 [15]首先将递归学习引入了SISR,称为DRCN。 Tai等。 [24]建议
DRRN通过引入具有共享参数的递归块来使训练稳定。 Tai等。 还介绍了称为Memnet的内存块[25]。
ESPCNN
Shi等。 [22]首先通过提出亚像素提出了一种实时超分辨率算法ESPCNN
卷积层。 ESPCNN [22]放大了图像
在网络末端以减少计算量。勒迪格
等。 [16]介绍了剩余部分和对抗性
学习[7,6]使生成的图像更逼真
和自然。 Lim等。 [18]使用了称为EDSR的更深更广的残差网络。 EDSR [18]删除了BN
层,并使用剩余缩放比例加快训练速度。
Lim还首先针对称为MDSR的多个比例因子(X2,X3,X4)训练了单个模型。 MDSR有不同之处
每个比例尺的图像处理模块和高档模块
因子。张等。 [36]提出了残差密集网络
(RDN)结合了残差块的优势
和密集的连接块。然后张等。 [35]
介绍了剩余渠道对SR框架的关注。 Wang等。 [28]提出了一种新颖的深层空间特征
转换以恢复基于分类的纹理
先验。 DBPN [10]和DSRN [9]都使用了
低分辨率和高分辨率图像的相互依赖性。
DBPN利用了迭代的上采样和下采样
层为每个层提供错误反馈机制
阶段。 Jo等。 [13]介绍了动态上采样
用于视频超分辨率的过滤器。动态上采样
过滤器是根据本地动态生成的
LR中每个像素的时空邻域
框架。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值