Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
http://vllab.ucmerced.edu/wlai24/LapSRN/
我们提出了拉普拉斯金字塔超分辨率网络(LapSRN)逐步重建高分辨率图像的残差。在每个金字塔层,我们的模型以粗分辨率特征图作为输入,预测高频残差,并使用转置卷积向上采样到更细的层。以由粗到精的方式逐步预测子带残差。在每一层,我们首先应用层叠的卷积层来提取特征图。然后我们使用一个转置的卷积层来将特征映射向上采样到一个更精细的层次。
提了一下LAPGAN和LAPSRN有什么区别。
结构
我们的模型以LR图像作为输入,并逐步预测log2 S水平下的剩余图像,其中S是比例因子。解释一下:例如,该网络由3个子网络组成,用于以8的比例因子对LR图像进行超分辨。
我们的模型有两个分支:(1)特征提取和(2)图像重建。
(1)特征提取
在s层,特征提取分支由d个卷积层和1个转置卷积层组成,将提取的特征按2的尺度向上采样。每个转置后的卷积层的输出连接到两个不同的层:(1)一个卷积层用于重建s级的残差图像,以及(2)一个卷积层用于提取s+1级较细的特征。我们在粗分辨率下执行特征提取,而在较细分辨率下仅使用一个转卷积层生成特征图。与在高分辨率下执行所有特征提取和重构的现有网络相比,我们的网络设计大大降低了计算复杂度。请注意,较低级别的特征表示与较高级别共享,因此会增加网络的非线性,以学习较细级别的复杂映射。
(2)图像重建。
在s级,输入图像通过转置卷积向上采样层。我们用双线性核初始化这一层,并允许它与所有其他层共同优化。然后对上采样图像进行组合
(使用element-wise求和)与来自特征提取分支的预测残差图像生成高分辨率的输出图像。将输出的s级HR图像送入s+1级图像重建分支。整个网络是一个层级结构相似的cnn级联。