树莓派4B与Intel Movidius计算棒2代实现深度学习应用加速

树莓派 专栏收录该内容
2 篇文章 0 订阅


本文参考了 从零开始搭建树莓派 + intel movidius 神经元计算棒2代深度学习环境
以及 树莓派+英特尔神经棒2代部署人工智能应用

树莓派

树莓派介绍

Raspberry Pi(中文名为“树莓派”,简写为RPi,(或者RasPi / RPI) 是为学习计算机编程教育而设计),只有信用卡大小的微型电脑,其系统基于Linux。别看其外表“娇小”,内“心”却很强大,视频、音频等功能通通皆有,可谓是“麻雀虽小,五脏俱全”。

树莓派由注册于英国的慈善组织“Raspberry Pi 基金会”开发,Eben·Upton/埃·厄普顿为项目带头人。
它是一款基于ARM的微型电脑主板,以SD/MicroSD卡为内存硬盘,卡片主板周围有1/2/4个USB接口和一个10/100 以太网接口(A型没有网口),可连接键盘、鼠标和网线,同时拥有视频模拟信号的电视输出接口和HDMI高清视频输出接口,以上部件全部整合在一张仅比信用卡稍大的主板上,具备所有PC的基本功能只需接通电视机和键盘,就能执行如电子表格、文字处理、玩游戏、播放高清视频等诸多功能。 Raspberry Pi B款只提供电脑板,无内存、电源、键盘、机箱或连线。

教程

链接: 树莓派新手无痛开机指南
链接: 树莓派使用视频教程

操作

换源部分:

  1. 修改sources.list
    使用Linux自带的nano编辑器:

    sudo nano /etc/apt/sources.list
    

    在打开的文件中,用#注释掉原文件内容,用以下内容取代:

    deb http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbian/ buster main contrib non-free rpi
    deb-src http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbian/ buster main contrib non-free rpi
    

    ctrl + O 保存, ctrl + X 退出

  2. 修改raspi.list

    sudo nano /etc/apt/sources.list.d/raspi.list
    

    用#注释掉原文件内容,用以下内容取代:

    deb http://mirror.tuna.tsinghua.edu.cn/raspberrypi/ stretch main ui
    deb-src http://mirror.tuna.tsinghua.edu.cn/raspberrypi/ stretch main ui
    

    ctrl + O 保存, ctrl + X 退出.
    使用sudo apt-get update命令,更新软件源列表,若没有错误,表示换源成功。

安装cmake

编译c/c++程序时需要使用cmake
使用以下命令安装cmake
sudo apt-get install cmake

Intel 神经计算棒环境配置

Intel 神经计算棒简介

Intel的Movidius神经计算棒基本概念梳理

OpenVINO™ 工具套件

英特尔® 发行版 OpenVINO™ 工具套件概述OpenVINO™ 工具套件概述

下载安装OpenVINO™ 工具套件

下载OpenVINO toolkit for Raspbian安装包:
使用以下地址从download.01.org/网站下载树莓派版的openvino工具套件。

https://download.01.org/opencv/2019/openvinotoolkit/R3/l_openvino_toolkit_runtime_raspbian_p_2019.3.334.tgz

经测试,2021版本的openvino与2019版本相比有一定改变,以下的配置和编译方式不适用于2021版。

下载完后包位于Downloads/目录下,打开命令行

cd ~/Downloads/

解压包:

tar -xf l_openvino_toolkit_runtime_raspbian_p_2019.3.334.tgz

在home/pi目录下新建一个名为intel文件夹:

mkdir ~/intel

将上述解压好的l_openvino_toolkit_runtime_raspbian_p_2019.3.334文件夹修改名称为openvino_2019,移动至intel文件夹下。

配置路径与环境
执行以下命令,会自动对setupvars.sh文件做修改

sed -i "s|<INSTALLDIR>|$(pwd)/openvino_2019|" openvino_2019/bin/setupvars.sh

配置环境,添加环境变量

sudo nano /home/pi/.bashrc

打开.bashrc文件,再最后一行添加一句:

source /home/pi/intel/openvino_2019/bin/setupvars.sh

保存,再打开一个新的终端,如果出现:

[setupvars.sh] OpenVINO environment initialized

就表示成功了

将当前Linux用户添加到users组:

sudo usermod -a -G users "$(whoami)"

接下来配置USB规则,执行:

sh ~intel/openvino_2019/install_dependencies/install_NCS_udev_rules.sh

到这里就成功安装好计算棒所需的所有东西了

demo测试验证安装是否成功

构建和运行对象检测示例,这个例子是执行人脸检测的。
下面第一步代表转到包含示例源代码的文件夹~/openvino_2019/deployment_tools/inference_engine/samples,后面三步表示建立新的文件夹build,并执行编译操作。

cd ~/openvino_2019/deployment_tools/inference_engine/samples
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-march=armv7-a"
make -j2 object_detection_sample_ssd

编译完成后下载网络和权重文件:

wget --no-check-certificate https://download.01.org/opencv/2019/open_model_zoo/R3/20190905_163000_models_bin/face-detection-adas-0001/FP16/face-detection-adas-0001.bin
wget --no-check-certificate https://download.01.org/opencv/2019/open_model_zoo/R3/20190905_163000_models_bin/face-detection-adas-0001/FP16/face-detection-adas-0001.xml

然后自己在网上找一张人脸的图片,在build文件夹下执行

./armv7l/Release/object_detection_sample_ssd -m face-detection-adas-0001.xml -d MYRIAD -i <path_to_image>
#<path_to_image>是人脸图片的绝对路径

如果运行成功,会在build文件夹下输出一副out_0.bmp图片,到这里表示计算棒运行成功!

Opencv + python api调用方法:

有时候我们是在python下做开发,这里也有提供了Opencv + python的运行例子
新建一个文件夹,先建立一个face_detection.py文件,写入:

import cv2 as cv
# Load the model 
net = cv.dnn.readNet('face-detection-adas-0001.xml', 'face-detection-adas-0001.bin') 
# Specify target device 
net.setPreferableTarget(cv.dnn.DNN_TARGET_MYRIAD)
# Read an image 
frame = cv.imread('/path/to/image')
# Prepare input blob and perform an inference 
blob = cv.dnn.blobFromImage(frame, size=(672, 384), ddepth=cv.CV_8U) net.setInput(blob) 
out = net.forward()
# Draw detected faces on the frame 
for detection in out.reshape(-1, 7): 
    confidence = float(detection[2]) 
    xmin = int(detection[3] * frame.shape[1]) 
    ymin = int(detection[4] * frame.shape[0]) 
    xmax = int(detection[5] * frame.shape[1]) 
    ymax = int(detection[6] * frame.shape[0])
    if confidence > 0.5:
        cv.rectangle(frame, (xmin, ymin), (xmax, ymax), color=(0, 255, 0))
# Save the frame to an image file 
cv.imwrite('out.png', frame)

在文件夹中放入刚刚我们下载的那两个文件:face-detection-adas-0001.bin和face-detection-adas-0001.xml
还有用于检测用的脸的图片face.jpeg

然后在终端执行:

python3 face_detection.py
程序成功运行没报错,则表示运行成功,然后我们会在文件夹下看见输出结果,检测成功

OpenVINO推理简介

OpenVINO推理简介

openvinotoolkit/open_model_zoo

openvinotoolkit/open_model_zoo
如果遇到下载问题,使用下面百度网盘链接:

链接:https://pan.baidu.com/s/1iVX4hfss8n3l0B6JwbnwLw 
提取码:s30k

在下面的open_model_zoo仓库里有很多其他应用的权重文件

https://download.01.org/opencv/2019/open_model_zoo/R3/20190905_163000_models_bin/

比如司机动作识别、面部表情识别、人体姿势识别、行人识别等等。

  • 0
    点赞
  • 0
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值