通信网性能分析基础

通信网性能分析基础期末复习索引
作者:まみやはさき(間宮羽咲)

第二章

教学大纲

  1. 理解泊松过程的定义,到达率λ的含义
  2. 理解泊松过程和负指数分布的关系
  3. 掌握生灭过程状态转移图的表示方法和稳态求解步骤
  4. 记住排队系统的描述方法
  5. 记住Little公式,会求平均队长(顾客数)
  6. 会用生灭过程分析M/M/1系统

泊松过程与负指数分布

泊松过程和负指数分布的无记忆特性在通信网理论这门课程中具有着重要的作用。可以认为泊松过程是取值离散的无记忆过程,而负指数分布是取值连续的无记忆过程。

因为这里主要是基础概念性的东西,实际不是出题的着重点,就不在此占用篇幅了,详见附录-第二章

生灭过程

  1. 到达率:λ=1/E[t]
  2. 服务率:μ=1/E[τ]
λ0
μ1
λ1
μ2
λk-1
μk
0
1
k-1
k
...
...

生灭过程的代数表示如下:
{ p { N ( k ) → N ( k + 1 ) } = λ k p { N ( k ) → N ( k − 1 ) } = μ k (2.1) \begin{cases} p\left\{ N\left( k \right) \rightarrow N\left( k+1 \right) \right\}& =& \lambda _k\\ p\left\{ N\left( k \right) \rightarrow N\left( k-1 \right) \right\}& =& \mu _k\\ \end{cases} \tag{2.1} {p{N(k)N(k+1)}p{N(k)N(k1)}==λkμk(2.1)
平衡状态本质上是“收支平衡”,即:
p k λ k = p k + 1 μ k + 1 (2.2) p_k\lambda _k=p_{k+1}\mu _{k+1} \tag{2.2} pkλk=pk+1μk+1(2.2)
(2.2)式对于从0开始的全体元素(但不包括最后一个元素)都成立。

Little公式

系统平均顾客数 N N N(单位:人)等于单位时间内到达系统的顾客数 λ \lambda λ(单位:人/s)乘以顾客在系统中的平均时间or系统时间(单位:s)。即:
N = λ ⋅ T (2.3) N=\lambda\cdot T\tag{2.3} N=λT(2.3)

M/M/1

  1. M表示到达为泊松/服务时间为负指数分布
  2. G表示一般分布
  3. D表示确定性分布

若生灭过程满足下关系,则称之为M/M/1:
λ k = λ (2.4) \lambda _k=\lambda \tag{2.4} λk=λ(2.4)

μ k = { μ , k ∈ N + 0 , k = 0 (2.5) \mu _k=\begin{cases} \mu ,& k\in \mathbb{N}^+\\ 0,& k=0\\ \end{cases} \tag{2.5} μk={μ,0,kN+k=0(2.5)

不妨令 ρ = λ / μ \rho = \lambda / \mu ρ=λ/μ,则有:
{ p 0 = ρ k ( 1 − ρ ) E [ N ] = ρ 1 − ρ D [ N ] = ρ ( 1 − ρ ) 2 , E [ s ] = T = ρ / ( 1 − ρ ) λ = 1 μ − λ (2.6) \begin{cases} p_0& =& \rho^k\left( 1-\rho \right)\\ E\left[ N \right]& =& \frac{\rho}{1-\rho}\\ D\left[ N \right]& =& \frac{\rho}{\left( 1-\rho \right) ^2},\\ E\left[ s \right] =T& =& \frac{\rho /\left( 1-\rho \right)}{\lambda}=\frac{1}{\mu -\lambda}\\ \end{cases} \tag{2.6} p0E[N]D[N]E[s]=T====ρk(1ρ)1ρρ(1ρ)2ρ,λρ/(1ρ)=μλ1(2.6)
其中 s s s为系统时间,其服从参数为$\mu -\lambda $的泊松分布

第三章

教学大纲

  1. 记住业务量、呼叫量的定义,理解到达呼叫量和通过呼叫量的区别
  2. 理解爱尔兰系统和Engset系统的差异
  3. 记住时间阻塞率和呼损的定义
  4. 记住爱尔兰B公式和它的递推式(重点
  5. 掌握爱尔兰拒绝系统求解通过呼叫量和拒绝呼叫量的方法
  6. 理解大群化效应
  7. 理解爱尔兰等待制系统稳态条件
  8. 理解爱尔兰等待制系统平均等待时间的公式
  9. 理解混合制系统的分析方法

呼叫阻塞、呼损

呼叫量:
呼叫量 = 业务量 观察时间 = Q T ( e r l ) (3.1) \text{呼叫量}=\frac{\text{业务量}}{\text{观察时间}}=\frac{Q}{T}\left( \mathrm{erl} \right) \tag{3.1} 呼叫量=观察时间业务量=TQ(erl)(3.1)
时间阻塞率:
p s = 阻塞时间 观察时间 (3.2) p_s=\frac{\text{阻塞时间}}{\text{观察时间}} \tag{3.2} ps=观察时间阻塞时间(3.2)
呼叫阻塞率:
p c = 拒绝呼叫量 总呼叫量 (3.3) p_{\mathrm{c}}=\frac{\text{拒绝呼叫量}}{\text{总呼叫量}} \tag{3.3} pc=总呼叫量拒绝呼叫量(3.3)

爱尔兰拒绝系统(M/M/s(s))

λ
μ
λ
λ
λ
0
1
2
s
...

若生灭过程满足下关系,则称之为爱尔兰拒绝等待系统(M/M/s(s)):
λ k = { λ , k = 0 , 1 , ⋯   , s − 1 0 , k > s (3.4) \lambda _k=\begin{cases} \lambda ,& k=0,1,\cdots ,s-1\\ 0,& k>s\\ \end{cases} \tag{3.4} λk={λ,0,k=0,1,,s1k>s(3.4)

μ k = { k μ , k = 1 , 2 , ⋯   , s 0 , k > s (3.5) \mu _k=\begin{cases} k\mu ,& k=1,2,\cdots,s\\ 0,& k>s\\\end{cases} \tag{3.5} μk={kμ,0,k=1,2,,sk>s(3.5)

不妨令 a = λ / μ a = \lambda / \mu a=λ/μ,则有:
{ p k = a k / k ! ∑ r = 0 s a r / r ! B ( s , a ) = p s = a s / s ! ∑ r = 0 s a r / r ! (3.6) \begin{cases} p_k& =& \frac{a^k/k!}{\sum_{r=0}^s{a^r/r!}}\\ B\left( s,a \right) =p_s& =& \frac{a^s/s!}{\sum_{r=0}^s{a^r/r!}}\\ \end{cases} \tag{3.6} {pkB(s,a)=ps==r=0sar/r!ak/k!r=0sar/r!as/s!(3.6)
若到达呼叫量为 a a a,通过呼叫量 a ′ = a ⋅ [ 1 − B ( s , a ) ] a^{\prime}=a\cdot \left[ 1-B\left( s,a \right) \right] a=a[1B(s,a)],拒绝呼叫量 a − a ′ = a ⋅ B ( s , a ) a-a^{\prime}=a\cdot B\left( s,a \right) aa=aB(s,a)

平均承载的呼叫量:
η = η s = a ′ s = a ⋅ B ( s , a ) s (3.7) \eta =\eta _s=\frac{a^{\prime}}{s}=\frac{a\cdot B\left( s,a \right)}{s} \tag{3.7} η=ηs=sa=saB(s,a)(3.7)

k k k条中继线通过的呼叫量是:
a k = a [ B ( k − 1 , a ) − B ( s , a ) ] , k = N + (3.8) a_k=a\left[ B\left( k-1,a \right) -B\left( s,a \right) \right] , k=\mathbb{N}^+ \tag{3.8} ak=a[B(k1,a)B(s,a)],k=N+(3.8)

大群化效应

中继线越多,每条中继线可以承载更多的呼叫量,即大群中继线效率更高(但是效率越高,对于呼叫量的波动就越敏感)

爱尔兰等待制系统(M/M/s)

λ
μ
λ
λ
λ
λ
0
1
2
s
...
...

若生灭过程满足下关系,则称之为爱尔兰等待制系统(M/M/s):
λ k = λ (3.9) \lambda _k=\lambda \tag{3.9} λk=λ(3.9)

μ k = { k μ , k = 1 , 2 , ⋯   , s − 1 s μ , k ⩾ s (3.10) \mu _k=\begin{cases} k\mu ,& k=1,2,\cdots,s-1\\ s\mu,& k\geqslant s\\\end{cases} \tag{3.10} μk={kμ,sμ,k=1,2,,s1ks(3.10)

不妨令 a = λ / μ a = \lambda / \mu a=λ/μ ρ = a / s \rho = a / s ρ=a/s则有:
{ p 0 = 1 a s s ! 1 1 − a / s + ∑ r = 0 s − 1 a r / r ! p k = { a k k ! p 0 , 0 ⩽ k < s a k s ! s k − s p 0 , k ⩾ s C ( s , a ) = a k s ! p 0 1 − a / s , E [ N ] = ρ 1 − ρ C ( s , a ) + a (3.11) \begin{cases} p_0& =& \frac{1}{\frac{a^s}{s!}\frac{1}{1-a/s}+\sum_{r=0}^{s-1}{a^r/r!}}\\ p_k& =& \begin{cases} \frac{a^k}{k!}p_0,& 0\leqslant k<s\\ \frac{a^k}{s!s^{k-s}}p_0,& k\geqslant s\\ \end{cases}\\ C\left( s,a \right)& =& \frac{a^k}{s!}\frac{p_0}{1-a/s},\\ E\left[ N \right]& =& \frac{\rho}{1-\rho}C\left( s,a \right) +a\\ \end{cases} \tag{3.11} p0pkC(s,a)E[N]====s!as1a/s1+r=0s1ar/r!1{k!akp0,s!sksakp0,0k<skss!ak1a/sp0,1ρρC(s,a)+a(3.11)

平均等待时间:
E [ w ] = [ ρ 1 − ρ C ( s , a ) ] λ = C ( s , a ) s μ ( 1 − ρ ) (3.12) E\left[ w \right] =\frac{\left[ \frac{\rho}{1-\rho}C\left( s,a \right) \right]}{\lambda}=\frac{C\left( s,a \right)}{s\mu \left( 1-\rho \right)} \tag{3.12} E[w]=λ[1ρρC(s,a)]=sμ(1ρ)C(s,a)(3.12)

通过呼叫量: a ′ = a a^{\prime}=a a=a

一般混合制系统(M/M/s(n))

λ
μ
λ
λ
λ
λ
λ
0
1
2
s
...
n
...

若生灭过程满足下关系,则称之为爱尔兰拒绝等待系统(M/M/s(n)):
λ k = { λ , k = 0 , 1 , ⋯   , n − 1 0 , k > n (3.13) \lambda _k=\begin{cases} \lambda ,& k=0,1,\cdots ,n-1\\ 0,& k>n\\\end{cases} \tag{3.13} λk={λ,0,k=0,1,,n1k>n(3.13)

μ k = { k μ , 1 ⩽ k < s s μ s ⩽ k ⩽ n 0 , k > n (3.14) \mu _k=\begin{cases} k\mu ,& 1\leqslant k<s\\ s\mu& s\leqslant k\leqslant n\\ 0,& k>n\\ \end{cases} \tag{3.14} μk=kμ,sμ0,1k<ssknk>n(3.14)

具体结论不是很重要,不写了。

恩格谢特系统

μ
(n-1)υ
(n-2)υ
(n-s-1)υ
0
1
2
s
...

恩格谢特系统与爱尔兰系统的差异:恩格谢特系统认为用户是有限的,爱尔兰系统认为用户是无限的。

若生灭过程满足下关系,则称之为恩格谢特系统:
λ k = { ( n − k ) υ , k = 0 , 1 , ⋯   , s − 1 0 , k ⩾ s (3.15) \lambda _k=\begin{cases} \left( n-k \right) \upsilon ,& k=0,1,\cdots ,s-1\\ 0,& k\geqslant s\\ \end{cases} \tag{3.15} λk={(nk)υ,0,k=0,1,,s1ks(3.15)

μ k = { k μ , k = 1 , 2 , ⋯   , s 0 , k > s (3.16) \mu _k=\begin{cases} k\mu ,& k=1,2,\cdots,s\\ 0,& k>s\\\end{cases} \tag{3.16} μk={kμ,0,k=1,2,,sk>s(3.16)

具体结论不重要,不写了。只需要记住一个结论:一般认为 n ⩾ 6 s n\geqslant 6s n6s时,恩格谢特系统就可以近似认为是一个爱尔兰系统了。

第四章

教学大纲

  1. 理解爱尔兰系统的局限性
  2. 掌握如何求数据网平均时延
  3. 了解多址接入的含义,知道常用的多址接入方式

爱尔兰系统的局限性

爱尔兰公式是一个局部呼损的计算公式,在如下情况,爱尔兰公式将不再适用:

  1. 交换机的中继线群不是全利用度(用Rapp近似方法)
  2. 用户数量有限(用恩格谢特系统)
  3. 大量重复呼叫流(见书4.2章)
  4. 大量迂回呼叫流(见书4.3章)

数据网平均时延

T i = 1 c i b i − λ i (4.1) T_i=\frac{1}{\frac{c_i}{b_i}-\lambda _i} \tag{4.1} Ti=biciλi1(4.1)

T = ∑ i T i ⋅ λ i λ = ∑ i , j T i , j ⋅ λ i , j λ (4.2) T=\frac{\sum_i{T_i\cdot \lambda _i}}{\lambda}=\frac{\sum_{i,j}{T_{i,j}\cdot \lambda _{i,j}}}{\lambda} \tag{4.2} T=λiTiλi=λi,jTi,jλi,j(4.2)

重复呼叫流

这一节不是重点,简略地说说吧。

设原始呼叫流为 a a a,重复呼叫导致增加了 Δ a \Delta a Δa的呼叫量,则总呼叫量为 a R = a + Δ a a_{\mathrm{R}}=a+\Delta a aR=a+Δa,这些中被拒绝的有 a R B ( s , a R ) a_{\mathrm{R}}B\left( s,a_{\mathrm{R}} \right) aRB(s,aR),假设它们有 ρ \rho ρ的比例重新呼叫,就得到了一个迭代方程——
a R = a + ρ a R B ( s , a R ) (4.3) a_{\mathrm{R}}=a+\rho a_{\mathrm{R}}B\left( s,a_{\mathrm{R}} \right) \tag{4.3} aR=a+ρaRB(s,aR)(4.3)
一般的中继群可以假设 ρ ≈ 0.55 \rho \approx 0.55 ρ0.55,重负荷的可以认为 ρ ≈ 1 \rho \approx 1 ρ1

多址接入

多址接入技术(Multiple Access Protocol)是在一个网络中,解决多个用户如何高校共享物理链路的技术。

信道接入技术的策略分为:固定分配、随机分配、按需分配。

  1. 固定分配:FDMA/TDMA/CDMA
  2. 随机分配:ALOHA系统
  3. 按需分配:中央控制的系统

固定分配

FDMA(CDMA与FDMA相同)的归一化平均转送时延比TDMA长,我感觉不是出题的着重点,就不在此占用篇幅了,详见附录-第四章

FDMA和TDMA仅在站点少且固定,同时流量大的情况下表现才良好。如果站点较多且不停变化,此时表现较差。如果每个站都能同时使用信道,并且分配一个正交码,通过正交码来区分不同的子信道,这样的方式被称为CDMA。CDMA特点如下:

  1. CDMA具有抗外部干扰的能力
  2. CDMA不需要同步机制
  3. 当站的数量上升时,性能逐步下降

随机分配

纯ALOHA容易冲突。

设传一个包要 P P P秒,到达率为 λ \lambda λ G G G P P P秒内平均到包数量。显然 G = λ ⋅ P G=\lambda \cdot P G=λP,则吞吐量 S = G × e − 2 G S=G \times \mathrm{e}^{-2G} S=G×e2G,在 G = 0.5 G=0.5 G=0.5 S S S取得最大值 S = 1 / ( 2 e ) ≈ 0.184 S=1/(2\mathrm{e})\approx 0.184 S=1/(2e)0.184。并且,系统若要有稳态,则需要 G ⩽ 0.5 G \leqslant 0.5 G0.5,否则碰撞会越来越严重,称之为系统饱和。

第五章

教学大纲

  1. 记住图的表示方法,度的定义
  2. 了解常见的各类图,记住完全图、正则图的性质
  3. 理解树、割端集、割边集、点连通度、线连通度、反圈、基本割集、基本圈的定义
  4. 掌握最小支撑树的求法
  5. 掌握最短路径Dijkstra算法和Floyd算法,会通过Floyd算法找网络的中心和中点
  6. 了解最大流问题和最小费用问题,理解最大流最小割定理

(完全/正则)图

图一般用 G = ( V , E ) G=\left( V,E \right) G=(V,E)表示, V V V代表端, E E E代表边, e i , j = ( v i , v j ) e_{i,j}=\left( v_i,v_j \right) ei,j=(vi,vj),不含自环和重边的图叫做简单图。

图的矩阵表示:关联阵 a i , j = 1 a_{i,j}=1 ai,j=1代表边 e i e_i ei与端点 v j v_j vj相关联。邻接阵 c i , j = 1 c_{i,j}=1 ci,j=1代表端点 v i v_i vi与端点 v j v_j vj有边。

某点的:与该点相邻边的个数。

完全图:全连接的图。

正则图:所有端点度均相同。

树等定义

若图有 n n n个端点和 m m m个边,以下三个定义是的等价定义——

  1. 图无圈且图连通,称为树
  2. 图无圈且 m = n − 1 m=n-1 m=n1,称为树
  3. 图连通且 m = n − 1 m=n-1 m=n1,称为树

割集:对于某些点或端的集合S,去掉这些集合S后,连通图将变得不连通,将这些集合S称为割集。

割端集:对于某些端的集合S,去掉这些集合S后,图的部分数将会增加(如连通变为不连通),将这些集合S称为割端集。

割边集:对于某些端的集合S,去掉这些集合S后,图的部分数将会增加(如连通变为不连通),将这些集合S称为割边集。

最小割端集:割端集中割端最少的集合。(割边同理)

极小割端集:它本身是割端集,但它的任意真子集都不是割端集。(割边同理)

最小割端集的端数目被称为点连通度,记为 α \alpha α。最小割边集的边数目被称为线连通度,记为 β \beta β

基本割集:在连通图里找一个支撑树T,任意去掉一条边V1,则图被拆成两个连通分支G1和G2,若所有连接G1和G2的边记为V,则V1+V就是基本割集。(参考https://wenku.baidu.com/view/dd66d23783c4bb4cf7ecd1c9.html

基本圈:支撑树T+任意一条边V形成的圈就叫基本圈。

反圈:对于边集合X,其与它的补边集合V\X的全体邻边的集合,被称为反圈。或者更简单地,集合X的全体邻边中,排除掉内部相连的那些邻边,就被称为反圈。

最小支撑树

Prim算法(反圈法)

初始任意给定端点集合X(0),在X的反圈中不断找权值最小的边,并把对应的端点加入到集合X。反复执行,直到X=V。

Kruskal算法(避圈法)

把边进行排序,从小往大选,只要不构成圈就行。

破圈法

破除图中所有圈的最大权边,直到无圈。

Dijkstra算法

首先将置定端X设置为最小权端点V,距离填最小权端点V的值,再把V最近的变化前的一行的置定端填到路由里(相当于回溯路由),最后对置定端执行一次松弛操作,结果填到下一行。反复执行。(见书79页或ppt51页)

FAQ

  1. 端点有权怎么处理?:把端点权乘以½加到邻边上,最后去除终点的权。
  2. 端点负权值怎么办?:微笑打出GG,Dijkstra搞不定负权值的。醒醒吧。
  3. 算法对有向图是否适用?:适用。

Floyd算法

Floyd算法相当于反复对第k行和第k列相关元素做松弛操作,k从1取遍到n,就是最优解了。

距离矩阵W的操作很简单,这里主要说说路由矩阵R。路由分前向路由和回溯路由,前向路由记录了下一跳,回溯路由记录了上一跳。

假设现在在对第k行和第k列相关元素做松弛操作,其中i行j列的元素V被改变,对于前向路由,该点路由矩阵的值i行k列的值替换。对于回溯路由,该点路由矩阵的值k行j列的值替换。

中心、中点

中心:宜做维修中心和服务中心(即对所有人都要快,要抢救)

求解方式:对列指标求最大值,求完后对行指标求最小值,即 min ⁡ i { max ⁡ j ( w i , j ( n ) ) } \underset{i}{\min}\left\{ \underset{j}{\max}\left( w_{i,j}^{(n)} \right) \right\} imin{jmax(wi,j(n))}

中点:宜做全网的交换中心(即只考虑平均意义上快,没救的就不管了

求解方式:对列指标求和,求完后对行指标求最小值,即 min ⁡ i { ∑ j w i , j ( n ) } \displaystyle \underset{i}{\min}\left\{ \sum_j{w_{i,j}^{(n)}} \right\} imin{jwi,j(n)}

最大流、最小费用、最小割

从源vs到宿vt流量最大为=最大流

从源vs到宿vt费用最小为最小费用

最大流最小割定理:可行流f为最大流,当且仅当图G中不存在源vs到宿vt的可增流量。

第七章

教学大纲

  1. 理解寿命分布与失效率函数的定义
  2. 记住失效率为α的不可修复系统寿命分布、平均寿命和可靠度函数
  3. 记住失效率为α、修复率为β可修复系统的可靠度函数和稳态表示
  4. 掌握串接和并接不可修复系统求可靠度和平均寿命的方法
  5. 理解可靠性设计考虑的基本原则
  6. 掌握各种连通度和网络近似可靠度的求法
  7. 了解网络可靠度的不同层次

寿命分布与失效率函数

用随机变量X来描述系统的寿命,则寿命分布F(t):
F ( t ) = P { X ⩽ t } (7.1) F\left( t \right) =P\left\{ X\leqslant t \right\} \tag{7.1} F(t)=P{Xt}(7.1)

R ( t ) = P { X > t } = 1 − F ( t ) (7.2) R\left( t \right) =P\left\{ X>t \right\} =1-F\left( t \right) \tag{7.2} R(t)=P{X>t}=1F(t)(7.2)

E [ X ] = ∫ 0 ∞ R ( t ) d t (7.3) E\left[ X \right] =\int_0^{\infty}{R\left( t \right) \mathrm{d}t} \tag{7.3} E[X]=0R(t)dt(7.3)

若f(t)为X的概率密度函数,则失效率函数
r ( t ) = f ( t ) 1 − F ( t ) (7.4) r\left( t \right) =\frac{f\left( t \right)}{1-F\left( t \right)} \tag{7.4} r(t)=1F(t)f(t)(7.4)

P { X ⩽ t + Δ t ∣ X > t } = F ( t + Δ t ) − F ( t ) 1 − F ( t ) ≈ f ( t ) 1 − F ( t ) Δ t = r ( t ) Δ t (7.5) \begin{aligned} P\left\{ X\leqslant t+\Delta t|X>t \right\} &=\frac{F\left( t+\Delta t \right) -F\left( t \right)}{1-F\left( t \right)}\\ &\approx \frac{f\left( t \right)}{1-F\left( t \right)}\Delta t\\ &=r\left( t \right) \Delta t\\ \end{aligned} \tag{7.5} P{Xt+ΔtX>t}=1F(t)F(t+Δt)F(t)1F(t)f(t)Δt=r(t)Δt(7.5)

R ( t ) = exp ⁡ ( − ∫ 0 t r ( τ ) d τ ) (7.6) R\left( t \right) =\exp \left( -\int_0^t{r\left( \tau \right) \mathrm{d}\tau} \right) \tag{7.6} R(t)=exp(0tr(τ)dτ)(7.6)

对于参数为α负指数分布而言,其失效率函数是常函数α。

不可修复系统

失效率为α的不可修复系统寿命分布,服从参数为α负指数分布.其平均寿命记为MTTF=1/α,可靠度函数为exp(-αt)

可修复系统

失效率为α、修复率为β可修复系统,其可靠度定义为正常时间除以总时间。平均故障时间MTBF=1/α,平均修复时间MTTR=1/β。因此其可靠度函数为:
R ( t ) = β α + β + α α + β e − ( α + β ) t (7.7) R\left( t \right) =\frac{\beta}{\alpha +\beta}+\frac{\alpha}{\alpha +\beta}\mathrm{e}^{-\left( \alpha +\beta \right) t} \tag{7.7} R(t)=α+ββ+α+βαe(α+β)t(7.7)
稳态为:
R ( ∞ ) = 1 / α 1 / α + 1 / β (7.8) R\left( \infty \right) =\frac{1/\alpha}{1/\alpha +1/\beta} \tag{7.8} R()=1/α+1/β1/α(7.8)

串接和并接不可修复系统

串接独立可靠度寿命
{ R ( t ) = e − ( α 1 + α 2 + ⋯ + α n ) t T = 1 α 1 + α 2 + ⋯ + α n (7.9) \begin{cases} R\left( t \right)& =& \mathrm{e}^{-\left( \alpha _1+\alpha _2+\cdots +\alpha _n \right) t}\\ T& =& \frac{1}{\alpha _1+\alpha _2+\cdots +\alpha _n}\\ \end{cases} \tag{7.9} {R(t)T==e(α1+α2++αn)tα1+α2++αn1(7.9)
串接系统,一个坏了其他停顿等待修复。可靠度与寿命:
{ R = 1 1 + ∑ r = 1 n α r β r M T T R = ∑ r = 1 n α r α 1 + α 2 + ⋯ + α n β r (7.10) \begin{cases} R& =& \frac{1}{1+\sum_{r=1}^n{\frac{\alpha _r}{\beta _r}}}\\ \mathrm{MTTR}& =& \sum_{r=1}^n{\frac{\alpha _r}{\alpha _1+\alpha _2+\cdots +\alpha _n}\beta _r}\\ \end{cases} \tag{7.10} {RMTTR==1+r=1nβrαr1r=1nα1+α2++αnαrβr(7.10)
并接独立可靠度寿命(计算寿命时假设各α均相等):
{ R ( t ) = 1 − ∏ r = 1 n ( 1 − e − α r t ) T = ( 1 + 1 2 + 1 3 + ⋯ + 1 n ) 1 α (7.11) \begin{cases} R\left( t \right)& =& 1-\prod_{r=1}^n{\left( 1-\mathrm{e}^{-\alpha _rt} \right)}\\ T& =& \left( 1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right) \frac{1}{\alpha}\\ \end{cases} \tag{7.11} {R(t)T==1r=1n(1eαrt)(1+21+31++n1)α1(7.11)
并接系统,一次只能修一个。可靠度与寿命:
{ R = 1 1 + ∑ r = 1 n α r β r M T T R = ∑ r = 1 n α r α 1 + α 2 + ⋯ + α n β r (7.10) \begin{cases} R& =& \frac{1}{1+\sum_{r=1}^n{\frac{\alpha _r}{\beta _r}}}\\ \mathrm{MTTR}& =& \sum_{r=1}^n{\frac{\alpha _r}{\alpha _1+\alpha _2+\cdots +\alpha _n}\beta _r}\\\end{cases} \tag{7.10} {RMTTR==1+r=1nβrαr1r=1nα1+α2++αnαrβr(7.10)

可靠性设计考虑的基本原则

将大系统逐步分解为小系统(前提是独立)

连通度

点连通度α,线连通度β,混合连通度γ=min|X|,其中X为混合割集。则有α=γ≤β≤δ≤2m/n

  1. Cα代表最小割端集
  2. Bβ代表最小割边集
  3. Aγ代表最小混合割集

附录

第二章

泊松过程

对于参数为 λ \lambda λ的泊松过程,区间长度为 t t t的时间内,到达 k k k个呼叫的概率为:
p k ( t ) = ( λ t ) k k ! e − λ t (A2.1) p_k\left( t \right) =\frac{\left( \lambda t \right) ^k}{k!}\mathrm{e}^{-\lambda t}\tag{A2.1} pk(t)=k!(λt)keλt(A2.1)
N ( t ) N\left( t \right) N(t) [ 0 , t ) \left[ 0,t \right) [0,t)内到达的呼叫量,我们不难求出其均值和方差为:
{ E [ N ( t ) ] = λ t D [ N ( t ) ] = λ t (A2.2) \begin{cases} E\left[ N\left( t \right) \right]& =& \lambda t\\ D\left[ N\left( t \right) \right]& =& \lambda t\\ \end{cases}\tag{A2.2} {E[N(t)]D[N(t)]==λtλt(A2.2)
参数为 λ 1 \lambda_1 λ1 λ 2 \lambda _2 λ2的独立泊松流的和是参数为 λ 1 + λ 2 \lambda_1+\lambda _2 λ1+λ2的泊松流,反之,参数为 λ 1 + λ 2 \lambda_1+\lambda _2 λ1+λ2的泊松流按照概率 λ 1 / λ \lambda_1 /\lambda λ1/λ λ 2 / λ \lambda_2 /\lambda λ2/λ分解,也会得到两个参数为 λ 1 \lambda_1 λ1 λ 2 \lambda _2 λ2的独立泊松流。这些结论也可以容易地推广到 n n n个独立泊松流的和。

负指数分布

在泊松分布中,我们相当于固定了时间区间长度 t t t的,求到达呼叫数 k k k的分布。如果我们反过来,我们只想求0呼叫状态持续时间区间长度 t t t会持续多久(即等多久才会来人),这就采用可以负指数分布来刻画。

对于参数为 λ \lambda λ的负指数分布,其分布函数为:
p { X < t } = 1 − p 0 ( t ) = 1 − e − λ t (A2.3) p\left\{ X<t \right\} =1-p_0\left( t \right) =1-\mathrm{e}^{-\lambda t} \tag{A2.3} p{X<t}=1p0(t)=1eλt(A2.3)
其概率密度函数为:
f x ( t ) = λ e − λ t (A2.4) f_x\left( t \right) =\lambda \mathrm{e}^{-\lambda t} \tag{A2.4} fx(t)=λeλt(A2.4)
n n n阶矩为:
E [ X n ] = ∫ 0 ∞ λ t n e − λ t d t = 1 λ n ∫ 0 ∞ ( λ t ) n e − λ t d ( λ t ) = n ! λ n (A2.5) \begin{aligned} E\left[ X^n \right] &=\int_0^{\infty}{\lambda t^n\mathrm{e}^{-\lambda t}\mathrm{d}t}\\ &=\frac{1}{\lambda ^n}\int_0^{\infty}{\left( \lambda t \right) ^n\mathrm{e}^{-\lambda t}\mathrm{d}\left( \lambda t \right)}\\ &=\frac{n!}{\lambda ^n}\\ \end{aligned} \tag{A2.5} E[Xn]=0λtneλtdt=λn10(λt)neλtd(λt)=λnn!(A2.5)
自然得到其均值和方差满足:
{ E [ X ] = 1 λ D [ X ] = 1 λ 2 (A2.6) \begin{cases} E\left[ X \right]& =& \frac{1}{\lambda}\\ D\left[ X \right]& =& \frac{1}{\lambda ^2}\\ \end{cases} \tag{A2.6} {E[X]D[X]==λ1λ21(A2.6)
对于 T = min ⁡ { T 1 , T 2 } T=\min \left\{ T_1,T_2 \right\} T=min{T1,T2},有:

  1. T T T服从参数为 λ 1 + λ 2 \lambda_1+\lambda _2 λ1+λ2的负指数分布
  2. p { T 1 < T 2 ∣ T = t } = λ 1 λ 1 + λ 2 p\left\{ T_1<T_2|T=t \right\} =\frac{\lambda _1}{\lambda _1+\lambda _2} p{T1<T2T=t}=λ1+λ2λ1

第四章

FDMA与TDMA

L ˉ \bar{L} Lˉ代表包长, C C C代表传输速率,用 X ˉ = L ˉ / C \bar{X}=\bar{L}/C Xˉ=Lˉ/C代表包的平均传输时间,归一化吞吐率 S ˉ = λ X ˉ \bar{S}=\lambda \bar{X} Sˉ=λXˉ,归一化平均转送时延 T ^ = T / X ˉ \hat{T}=T/\bar{X} T^=T/Xˉ

考虑M/D/1系统,到达为参数为 λ \lambda λ的泊松过程,服务时间 τ \tau τ的定长分布,令 ρ = λ ⋅ τ \rho = \lambda \cdot \tau ρ=λτ为到达的总量:
E [ w ] = ρ τ 2 ( 1 − ρ ) (A4.1) E\left[ w \right] =\frac{\rho \tau}{2\left( 1-\rho \right)} \tag{A4.1} E[w]=2(1ρ)ρτ(A4.1)
考虑FDMA,认为每个用户有C/K的速率的子信道,则:
T ^ = K ( 2 − S ) 1 − S (A4.2) \hat{T}=\frac{K\left( 2-S \right)}{1-S} \tag{A4.2} T^=1SK(2S)(A4.2)
考虑TDMA,则:
T ^ = K 2 ( 1 − S ) + 1 (A4.3) \hat{T}=\frac{K}{2\left( 1-S \right)}+1 \tag{A4.3} T^=2(1S)K+1(A4.3)
因此:
T ^ F D M A = T ^ C D M A = T ^ T D M A + K 2 − 1 ⩾ T ^ T D M A (A4.4) \hat{T}_{\mathrm{FDMA}}=\hat{T}_{\mathrm{CDMA}}=\hat{T}_{\mathrm{TDMA}}+\frac{K}{2}-1\geqslant \hat{T}_{\mathrm{TDMA}} \tag{A4.4} T^FDMA=T^CDMA=T^TDMA+2K1T^TDMA(A4.4)

mbda _1}{\lambda _1+\lambda _2}$

第四章

FDMA与TDMA

L ˉ \bar{L} Lˉ代表包长, C C C代表传输速率,用$\bar{X}=\bar{L}/C 代 表 包 的 平 均 传 输 时 间 , 归 一 化 吞 吐 率 代表包的平均传输时间,归一化吞吐率 \bar{S}=\lambda \bar{X} , 归 一 化 平 均 转 送 时 延 ,归一化平均转送时延 \hat{T}=T/\bar{X}$

考虑M/D/1系统,到达为参数为$\lambda 的 泊 松 过 程 , 服 务 时 间 的泊松过程,服务时间 \tau 的 定 长 分 布 , 令 的定长分布,令 \rho = \lambda \cdot \tau$为到达的总量:
E [ w ] = ρ τ 2 ( 1 − ρ ) (A4.1) E\left[ w \right] =\frac{\rho \tau}{2\left( 1-\rho \right)} \tag{A4.1} E[w]=2(1ρ)ρτ(A4.1)
考虑FDMA,认为每个用户有C/K的速率的子信道,则:
T ^ = K ( 2 − S ) 1 − S (A4.2) \hat{T}=\frac{K\left( 2-S \right)}{1-S} \tag{A4.2} T^=1SK(2S)(A4.2)
考虑TDMA,则:
T ^ = K 2 ( 1 − S ) + 1 (A4.3) \hat{T}=\frac{K}{2\left( 1-S \right)}+1 \tag{A4.3} T^=2(1S)K+1(A4.3)
因此:
T ^ F D M A = T ^ C D M A = T ^ T D M A + K 2 − 1 ⩾ T ^ T D M A (A4.4) \hat{T}_{\mathrm{FDMA}}=\hat{T}_{\mathrm{CDMA}}=\hat{T}_{\mathrm{TDMA}}+\frac{K}{2}-1\geqslant \hat{T}_{\mathrm{TDMA}} \tag{A4.4} T^FDMA=T^CDMA=T^TDMA+2K1T^TDMA(A4.4)

  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值