朴素贝叶斯是经典的机器学习算法,也是统计模型中的一个基本方法。它的基本思想是利用统计学中的条件概率来进行分类。它是一种有监督学习算法,其中“朴素”是指该算法基于样本特征之间相互独立这个“朴素”假设。朴素贝叶斯原理简单、容易实现,多用于文本分类问题,如垃圾邮件过滤等。
12.1 朴素贝叶斯是什么
12.1.1 条件概率是什么
已知事件 A 发生而求事件 B 发生的概率 P(B|A) 就是条件概率。
12.1.2 贝叶斯公式是什么
贝叶斯公式:P(A|B)=P(B|A)P(A)/P(B)
12.2 朴素贝叶斯实现方法
朴素贝叶斯可以细分为 3 种方法,分别是伯努利朴素贝叶斯、高斯朴素贝叶斯和多项式朴素贝叶斯。
12.2.1 伯努利朴素贝叶斯方法
伯努利朴素贝叶斯分类器是假定样本特征的条件概率分布服从二项分布。
12.2.2 高斯朴素贝叶斯方法
高斯朴素贝叶斯分类器是假定样本特征符合高斯分布时常用的算法。
12.2.3 多项式朴素贝叶斯方法
多项式朴素贝叶斯分类器是假定样本特征符合多项式分布时常用的算法。